Properties

Label 2.14080.8t6.f.b
Dimension $2$
Group $D_{8}$
Conductor $14080$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{8}$
Conductor: \(14080\)\(\medspace = 2^{8} \cdot 5 \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.0.7676100608000.2
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Determinant: 1.55.2t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.17600.2

Defining polynomial

$f(x)$$=$ \( x^{8} + 4x^{6} + 54x^{4} + 56x^{2} + 20 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 8.

Roots:
$r_{ 1 }$ $=$ \( 20 + 44\cdot 71 + 30\cdot 71^{2} + 61\cdot 71^{3} + 17\cdot 71^{4} + 49\cdot 71^{5} + 8\cdot 71^{6} + 20\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 26 + 70\cdot 71 + 29\cdot 71^{2} + 60\cdot 71^{3} + 53\cdot 71^{4} + 7\cdot 71^{5} + 7\cdot 71^{6} + 24\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 31 + 53\cdot 71 + 46\cdot 71^{2} + 28\cdot 71^{3} + 13\cdot 71^{4} + 8\cdot 71^{5} + 50\cdot 71^{6} + 4\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 35 + 70\cdot 71 + 62\cdot 71^{2} + 67\cdot 71^{3} + 36\cdot 71^{4} + 49\cdot 71^{5} + 9\cdot 71^{6} + 36\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 36 + 8\cdot 71^{2} + 3\cdot 71^{3} + 34\cdot 71^{4} + 21\cdot 71^{5} + 61\cdot 71^{6} + 34\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 40 + 17\cdot 71 + 24\cdot 71^{2} + 42\cdot 71^{3} + 57\cdot 71^{4} + 62\cdot 71^{5} + 20\cdot 71^{6} + 66\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 45 + 41\cdot 71^{2} + 10\cdot 71^{3} + 17\cdot 71^{4} + 63\cdot 71^{5} + 63\cdot 71^{6} + 46\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 51 + 26\cdot 71 + 40\cdot 71^{2} + 9\cdot 71^{3} + 53\cdot 71^{4} + 21\cdot 71^{5} + 62\cdot 71^{6} + 50\cdot 71^{7} +O(71^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7)(2,8)(4,5)$
$(1,4,2,6,8,5,7,3)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$8$$(1,4,2,6,8,5,7,3)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,6,7,4,8,3,2,5)$$-\zeta_{8}^{3} + \zeta_{8}$