Basic invariants
| Dimension: | $2$ |
| Group: | $D_{8}$ |
| Conductor: | \(14080\)\(\medspace = 2^{8} \cdot 5 \cdot 11 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 8.0.7676100608000.2 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $D_{8}$ |
| Parity: | odd |
| Determinant: | 1.55.2t1.a.a |
| Projective image: | $D_4$ |
| Projective stem field: | Galois closure of 4.2.17600.2 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{8} + 4x^{6} + 54x^{4} + 56x^{2} + 20 \)
|
The roots of $f$ are computed in $\Q_{ 71 }$ to precision 8.
Roots:
| $r_{ 1 }$ | $=$ |
\( 20 + 44\cdot 71 + 30\cdot 71^{2} + 61\cdot 71^{3} + 17\cdot 71^{4} + 49\cdot 71^{5} + 8\cdot 71^{6} + 20\cdot 71^{7} +O(71^{8})\)
|
| $r_{ 2 }$ | $=$ |
\( 26 + 70\cdot 71 + 29\cdot 71^{2} + 60\cdot 71^{3} + 53\cdot 71^{4} + 7\cdot 71^{5} + 7\cdot 71^{6} + 24\cdot 71^{7} +O(71^{8})\)
|
| $r_{ 3 }$ | $=$ |
\( 31 + 53\cdot 71 + 46\cdot 71^{2} + 28\cdot 71^{3} + 13\cdot 71^{4} + 8\cdot 71^{5} + 50\cdot 71^{6} + 4\cdot 71^{7} +O(71^{8})\)
|
| $r_{ 4 }$ | $=$ |
\( 35 + 70\cdot 71 + 62\cdot 71^{2} + 67\cdot 71^{3} + 36\cdot 71^{4} + 49\cdot 71^{5} + 9\cdot 71^{6} + 36\cdot 71^{7} +O(71^{8})\)
|
| $r_{ 5 }$ | $=$ |
\( 36 + 8\cdot 71^{2} + 3\cdot 71^{3} + 34\cdot 71^{4} + 21\cdot 71^{5} + 61\cdot 71^{6} + 34\cdot 71^{7} +O(71^{8})\)
|
| $r_{ 6 }$ | $=$ |
\( 40 + 17\cdot 71 + 24\cdot 71^{2} + 42\cdot 71^{3} + 57\cdot 71^{4} + 62\cdot 71^{5} + 20\cdot 71^{6} + 66\cdot 71^{7} +O(71^{8})\)
|
| $r_{ 7 }$ | $=$ |
\( 45 + 41\cdot 71^{2} + 10\cdot 71^{3} + 17\cdot 71^{4} + 63\cdot 71^{5} + 63\cdot 71^{6} + 46\cdot 71^{7} +O(71^{8})\)
|
| $r_{ 8 }$ | $=$ |
\( 51 + 26\cdot 71 + 40\cdot 71^{2} + 9\cdot 71^{3} + 53\cdot 71^{4} + 21\cdot 71^{5} + 62\cdot 71^{6} + 50\cdot 71^{7} +O(71^{8})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ | |
| $4$ | $2$ | $(1,7)(2,8)(4,5)$ | $0$ | |
| $4$ | $2$ | $(1,3)(2,5)(4,7)(6,8)$ | $0$ | ✓ |
| $2$ | $4$ | $(1,2,8,7)(3,4,6,5)$ | $0$ | |
| $2$ | $8$ | $(1,4,2,6,8,5,7,3)$ | $\zeta_{8}^{3} - \zeta_{8}$ | |
| $2$ | $8$ | $(1,6,7,4,8,3,2,5)$ | $-\zeta_{8}^{3} + \zeta_{8}$ |