Properties

Label 2.1027.6t5.b
Dimension 22
Group S3×C3S_3\times C_3
Conductor 10271027
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:S3×C3S_3\times C_3
Conductor:10271027=1379\medspace = 13 \cdot 79
Artin number field: Galois closure of 6.0.83323591.1
Galois orbit size: 22
Smallest permutation container: S3×C3S_3\times C_3
Parity: odd
Projective image: S3S_3
Projective field: Galois closure of 3.1.13351.1

Galois action

Roots of defining polynomial

The roots of ff are computed in an extension of Q47\Q_{ 47 } to precision 6.
Minimal polynomial of a generator aa of KK over Q47\mathbb{Q}_{ 47 }: x2+45x+5 x^{2} + 45x + 5 Copy content Toggle raw display
Roots:
r1r_{ 1 } == 16a+24+(34a+42)47+(34a+32)472+(46a+9)473+(20a+40)474+(24a+38)475+O(476) 16 a + 24 + \left(34 a + 42\right)\cdot 47 + \left(34 a + 32\right)\cdot 47^{2} + \left(46 a + 9\right)\cdot 47^{3} + \left(20 a + 40\right)\cdot 47^{4} + \left(24 a + 38\right)\cdot 47^{5} +O(47^{6}) Copy content Toggle raw display
r2r_{ 2 } == 24a+18+(43a+29)47+(43a+2)472+(38a+30)473+(21a+3)474+(27a+1)475+O(476) 24 a + 18 + \left(43 a + 29\right)\cdot 47 + \left(43 a + 2\right)\cdot 47^{2} + \left(38 a + 30\right)\cdot 47^{3} + \left(21 a + 3\right)\cdot 47^{4} + \left(27 a + 1\right)\cdot 47^{5} +O(47^{6}) Copy content Toggle raw display
r3r_{ 3 } == 7a+6+(16a+22)47+(15a+11)472+(8a+7)473+(4a+3)474+(42a+7)475+O(476) 7 a + 6 + \left(16 a + 22\right)\cdot 47 + \left(15 a + 11\right)\cdot 47^{2} + \left(8 a + 7\right)\cdot 47^{3} + \left(4 a + 3\right)\cdot 47^{4} + \left(42 a + 7\right)\cdot 47^{5} +O(47^{6}) Copy content Toggle raw display
r4r_{ 4 } == 40a+20+30a47+(31a+26)472+(38a+8)473+(42a+3)474+(4a+40)475+O(476) 40 a + 20 + 30 a\cdot 47 + \left(31 a + 26\right)\cdot 47^{2} + \left(38 a + 8\right)\cdot 47^{3} + \left(42 a + 3\right)\cdot 47^{4} + \left(4 a + 40\right)\cdot 47^{5} +O(47^{6}) Copy content Toggle raw display
r5r_{ 5 } == 23a+19+(3a+45)47+(3a+46)472+(8a+16)473+(25a+8)474+(19a+34)475+O(476) 23 a + 19 + \left(3 a + 45\right)\cdot 47 + \left(3 a + 46\right)\cdot 47^{2} + \left(8 a + 16\right)\cdot 47^{3} + \left(25 a + 8\right)\cdot 47^{4} + \left(19 a + 34\right)\cdot 47^{5} +O(47^{6}) Copy content Toggle raw display
r6r_{ 6 } == 31a+9+(12a+1)47+(12a+21)472+21473+(26a+35)474+(22a+19)475+O(476) 31 a + 9 + \left(12 a + 1\right)\cdot 47 + \left(12 a + 21\right)\cdot 47^{2} + 21\cdot 47^{3} + \left(26 a + 35\right)\cdot 47^{4} + \left(22 a + 19\right)\cdot 47^{5} +O(47^{6}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(1,3,2)(4,6,5)(1,3,2)(4,6,5)
(1,5,2,4,3,6)(1,5,2,4,3,6)
(4,6,5)(4,6,5)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character values
c1c1 c2c2
11 11 ()() 22 22
33 22 (1,4)(2,6)(3,5)(1,4)(2,6)(3,5) 00 00
11 33 (1,2,3)(4,6,5)(1,2,3)(4,6,5) 2ζ32 \zeta_{3} 2ζ32-2 \zeta_{3} - 2
11 33 (1,3,2)(4,5,6)(1,3,2)(4,5,6) 2ζ32-2 \zeta_{3} - 2 2ζ32 \zeta_{3}
22 33 (1,3,2)(4,6,5)(1,3,2)(4,6,5) 1-1 1-1
22 33 (4,6,5)(4,6,5) ζ3+1\zeta_{3} + 1 ζ3-\zeta_{3}
22 33 (4,5,6)(4,5,6) ζ3-\zeta_{3} ζ3+1\zeta_{3} + 1
33 66 (1,5,2,4,3,6)(1,5,2,4,3,6) 00 00
33 66 (1,6,3,4,2,5)(1,6,3,4,2,5) 00 00
The blue line marks the conjugacy class containing complex conjugation.