Properties

Label 2.1288.4t3.h.a
Dimension $2$
Group $D_{4}$
Conductor $1288$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1288\)\(\medspace = 2^{3} \cdot 7 \cdot 23 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.9016.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.1288.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-7}, \sqrt{46})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 2x^{2} + 9x + 11 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 3 + 18\cdot 37 + 4\cdot 37^{2} + 22\cdot 37^{3} + 9\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 6 + 8\cdot 37 + 23\cdot 37^{2} + 22\cdot 37^{3} + 19\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 32 + 34\cdot 37 + 26\cdot 37^{2} + 35\cdot 37^{3} + 15\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 34 + 12\cdot 37 + 19\cdot 37^{2} + 30\cdot 37^{3} + 28\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$