Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(1288\)\(\medspace = 2^{3} \cdot 7 \cdot 23 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.9016.2 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.1288.2t1.b.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{-7}, \sqrt{46})\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} - x^{3} - 2x^{2} + 9x + 11 \)
|
The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 3 + 18\cdot 37 + 4\cdot 37^{2} + 22\cdot 37^{3} + 9\cdot 37^{4} +O(37^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 6 + 8\cdot 37 + 23\cdot 37^{2} + 22\cdot 37^{3} + 19\cdot 37^{4} +O(37^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 32 + 34\cdot 37 + 26\cdot 37^{2} + 35\cdot 37^{3} + 15\cdot 37^{4} +O(37^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 34 + 12\cdot 37 + 19\cdot 37^{2} + 30\cdot 37^{3} + 28\cdot 37^{4} +O(37^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,2)(3,4)$ | $-2$ | |
$2$ | $2$ | $(1,3)(2,4)$ | $0$ | ✓ |
$2$ | $2$ | $(1,2)$ | $0$ | |
$2$ | $4$ | $(1,4,2,3)$ | $0$ |