Basic invariants
Dimension: | $2$ |
Group: | $C_4\wr C_2$ |
Conductor: | \(1184\)\(\medspace = 2^{5} \cdot 37 \) |
Artin stem field: | Galois closure of 8.0.3319595008.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4\wr C_2$ |
Parity: | odd |
Determinant: | 1.37.4t1.a.a |
Projective image: | $D_4$ |
Projective stem field: | Galois closure of 4.2.810448.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{8} - 2x^{4} + 37 \)
|
The roots of $f$ are computed in $\Q_{ 157 }$ to precision 8.
Roots:
$r_{ 1 }$ | $=$ |
\( 12 + 33\cdot 157 + 150\cdot 157^{2} + 17\cdot 157^{3} + 63\cdot 157^{4} + 50\cdot 157^{5} + 127\cdot 157^{6} + 128\cdot 157^{7} +O(157^{8})\)
|
$r_{ 2 }$ | $=$ |
\( 22 + 39\cdot 157 + 94\cdot 157^{2} + 90\cdot 157^{3} + 150\cdot 157^{4} + 154\cdot 157^{5} + 124\cdot 157^{6} + 13\cdot 157^{7} +O(157^{8})\)
|
$r_{ 3 }$ | $=$ |
\( 70 + 12\cdot 157 + 101\cdot 157^{2} + 7\cdot 157^{3} + 2\cdot 157^{4} + 6\cdot 157^{5} + 53\cdot 157^{6} + 30\cdot 157^{7} +O(157^{8})\)
|
$r_{ 4 }$ | $=$ |
\( 76 + 67\cdot 157 + 96\cdot 157^{2} + 62\cdot 157^{3} + 47\cdot 157^{4} + 64\cdot 157^{5} + 122\cdot 157^{6} + 7\cdot 157^{7} +O(157^{8})\)
|
$r_{ 5 }$ | $=$ |
\( 81 + 89\cdot 157 + 60\cdot 157^{2} + 94\cdot 157^{3} + 109\cdot 157^{4} + 92\cdot 157^{5} + 34\cdot 157^{6} + 149\cdot 157^{7} +O(157^{8})\)
|
$r_{ 6 }$ | $=$ |
\( 87 + 144\cdot 157 + 55\cdot 157^{2} + 149\cdot 157^{3} + 154\cdot 157^{4} + 150\cdot 157^{5} + 103\cdot 157^{6} + 126\cdot 157^{7} +O(157^{8})\)
|
$r_{ 7 }$ | $=$ |
\( 135 + 117\cdot 157 + 62\cdot 157^{2} + 66\cdot 157^{3} + 6\cdot 157^{4} + 2\cdot 157^{5} + 32\cdot 157^{6} + 143\cdot 157^{7} +O(157^{8})\)
|
$r_{ 8 }$ | $=$ |
\( 145 + 123\cdot 157 + 6\cdot 157^{2} + 139\cdot 157^{3} + 93\cdot 157^{4} + 106\cdot 157^{5} + 29\cdot 157^{6} + 28\cdot 157^{7} +O(157^{8})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ | |
$2$ | $2$ | $(3,6)(4,5)$ | $0$ | |
$4$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $0$ | ✓ |
$1$ | $4$ | $(1,7,8,2)(3,4,6,5)$ | $-2 \zeta_{4}$ | |
$1$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $2 \zeta_{4}$ | |
$2$ | $4$ | $(3,5,6,4)$ | $\zeta_{4} + 1$ | |
$2$ | $4$ | $(3,4,6,5)$ | $-\zeta_{4} + 1$ | |
$2$ | $4$ | $(1,8)(2,7)(3,4,6,5)$ | $-\zeta_{4} - 1$ | |
$2$ | $4$ | $(1,8)(2,7)(3,5,6,4)$ | $\zeta_{4} - 1$ | |
$2$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $0$ | |
$4$ | $4$ | $(1,4,8,5)(2,3,7,6)$ | $0$ | |
$4$ | $8$ | $(1,6,2,4,8,3,7,5)$ | $0$ | |
$4$ | $8$ | $(1,4,7,6,8,5,2,3)$ | $0$ |