Properties

Label 2.1184.8t17.a.a
Dimension $2$
Group $C_4\wr C_2$
Conductor $1184$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_4\wr C_2$
Conductor: \(1184\)\(\medspace = 2^{5} \cdot 37 \)
Artin stem field: Galois closure of 8.0.3319595008.1
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Determinant: 1.37.4t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.810448.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{4} + 37 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 8.

Roots:
$r_{ 1 }$ $=$ \( 12 + 33\cdot 157 + 150\cdot 157^{2} + 17\cdot 157^{3} + 63\cdot 157^{4} + 50\cdot 157^{5} + 127\cdot 157^{6} + 128\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 22 + 39\cdot 157 + 94\cdot 157^{2} + 90\cdot 157^{3} + 150\cdot 157^{4} + 154\cdot 157^{5} + 124\cdot 157^{6} + 13\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 70 + 12\cdot 157 + 101\cdot 157^{2} + 7\cdot 157^{3} + 2\cdot 157^{4} + 6\cdot 157^{5} + 53\cdot 157^{6} + 30\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 76 + 67\cdot 157 + 96\cdot 157^{2} + 62\cdot 157^{3} + 47\cdot 157^{4} + 64\cdot 157^{5} + 122\cdot 157^{6} + 7\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 81 + 89\cdot 157 + 60\cdot 157^{2} + 94\cdot 157^{3} + 109\cdot 157^{4} + 92\cdot 157^{5} + 34\cdot 157^{6} + 149\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 87 + 144\cdot 157 + 55\cdot 157^{2} + 149\cdot 157^{3} + 154\cdot 157^{4} + 150\cdot 157^{5} + 103\cdot 157^{6} + 126\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 135 + 117\cdot 157 + 62\cdot 157^{2} + 66\cdot 157^{3} + 6\cdot 157^{4} + 2\cdot 157^{5} + 32\cdot 157^{6} + 143\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 145 + 123\cdot 157 + 6\cdot 157^{2} + 139\cdot 157^{3} + 93\cdot 157^{4} + 106\cdot 157^{5} + 29\cdot 157^{6} + 28\cdot 157^{7} +O(157^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5,6,4)$
$(1,8)(2,7)(3,6)(4,5)$
$(3,6)(4,5)$
$(1,7,8,2)(3,4,6,5)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$1$$4$$(1,7,8,2)(3,4,6,5)$$-2 \zeta_{4}$
$1$$4$$(1,2,8,7)(3,5,6,4)$$2 \zeta_{4}$
$2$$4$$(3,5,6,4)$$\zeta_{4} + 1$
$2$$4$$(3,4,6,5)$$-\zeta_{4} + 1$
$2$$4$$(1,8)(2,7)(3,4,6,5)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,7)(3,5,6,4)$$\zeta_{4} - 1$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$8$$(1,6,2,4,8,3,7,5)$$0$
$4$$8$$(1,4,7,6,8,5,2,3)$$0$