Basic invariants
Dimension: | $2$ |
Group: | 16T60 |
Conductor: | \(1184\)\(\medspace = 2^{5} \cdot 37 \) |
Artin stem field: | Galois closure of 16.0.60343937529850535870464.5 |
Galois orbit size: | $4$ |
Smallest permutation container: | 16T60 |
Parity: | odd |
Determinant: | 1.148.6t1.b.b |
Projective image: | $A_4$ |
Projective stem field: | Galois closure of 4.0.87616.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{16} - 8x^{14} - 12x^{12} + 184x^{10} + 486x^{8} - 184x^{6} - 12x^{4} + 8x^{2} + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$:
\( x^{6} + x^{4} + 7x^{3} + 4x^{2} + 45x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 15 a^{5} + a^{4} + 8 a^{3} + 33 a^{2} + 9 a + 4 + \left(43 a^{5} + 18 a^{4} + 13 a^{3} + 37 a^{2} + 9 a + 49\right)\cdot 53 + \left(51 a^{5} + 32 a^{3} + 32 a^{2} + 10 a + 42\right)\cdot 53^{2} + \left(38 a^{5} + 22 a^{4} + 19 a^{3} + 23 a^{2} + 22 a + 1\right)\cdot 53^{3} + \left(46 a^{5} + 13 a^{4} + 38 a^{3} + 7 a^{2} + 3 a + 5\right)\cdot 53^{4} + \left(36 a^{5} + 8 a^{4} + 33 a^{3} + 4 a^{2} + 10 a + 8\right)\cdot 53^{5} + \left(33 a^{5} + 46 a^{4} + 27 a^{3} + 23 a^{2} + 4 a + 7\right)\cdot 53^{6} + \left(13 a^{5} + 9 a^{4} + 5 a^{3} + 19 a^{2} + 24 a + 30\right)\cdot 53^{7} + \left(17 a^{5} + 15 a^{4} + 10 a^{3} + 49 a^{2} + 7 a + 6\right)\cdot 53^{8} + \left(2 a^{5} + 11 a^{4} + 20 a^{3} + 22 a + 3\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 2 }$ | $=$ |
\( 36 a^{5} + 46 a^{4} + 52 a^{3} + 46 a^{2} + 46 a + 49 + \left(9 a^{5} + 50 a^{4} + 8 a^{3} + 23 a^{2} + 21 a + 22\right)\cdot 53 + \left(27 a^{5} + 28 a^{4} + 32 a^{3} + 42 a^{2} + 3 a + 30\right)\cdot 53^{2} + \left(4 a^{5} + 45 a^{3} + 47 a^{2} + 39 a + 10\right)\cdot 53^{3} + \left(51 a^{5} + 50 a^{4} + 43 a^{3} + 4 a^{2} + 6 a + 52\right)\cdot 53^{4} + \left(20 a^{5} + 25 a^{4} + 52 a^{3} + a^{2} + 22 a + 43\right)\cdot 53^{5} + \left(15 a^{5} + 25 a^{4} + 30 a^{3} + 49 a^{2} + 14 a + 35\right)\cdot 53^{6} + \left(31 a^{5} + 3 a^{4} + 44 a^{3} + 15 a^{2} + 17 a + 29\right)\cdot 53^{7} + \left(23 a^{5} + 48 a^{4} + 21 a^{3} + 48 a^{2} + 21 a + 6\right)\cdot 53^{8} + \left(47 a^{5} + 27 a^{4} + 14 a^{3} + 49 a^{2} + 5 a + 18\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 3 }$ | $=$ |
\( 23 a^{5} + 17 a^{4} + 18 a^{3} + 42 a^{2} + 24 a + 50 + \left(14 a^{5} + 38 a^{4} + 18 a^{3} + 49 a^{2} + 33 a + 8\right)\cdot 53 + \left(36 a^{5} + 29 a^{4} + 43 a^{3} + 7 a^{2} + 13 a + 3\right)\cdot 53^{2} + \left(50 a^{5} + 51 a^{4} + 19 a^{3} + 12 a^{2} + 13 a + 32\right)\cdot 53^{3} + \left(34 a^{5} + 14 a^{4} + 25 a^{3} + 21 a^{2} + 39 a + 27\right)\cdot 53^{4} + \left(3 a^{5} + 35 a^{4} + 16 a^{3} + 24 a^{2} + 38 a + 25\right)\cdot 53^{5} + \left(21 a^{5} + 3 a^{4} + 52 a^{3} + 10 a^{2} + 10 a + 5\right)\cdot 53^{6} + \left(50 a^{5} + 10 a^{4} + 36 a^{3} + 21 a^{2} + 8 a + 51\right)\cdot 53^{7} + \left(51 a^{5} + 24 a^{4} + 10 a^{3} + 29 a^{2} + 43\right)\cdot 53^{8} + \left(45 a^{5} + 28 a^{4} + 4 a^{3} + 30 a^{2} + 50 a + 36\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 4 }$ | $=$ |
\( 27 a^{5} + 38 a^{4} + 24 a^{3} + 36 a^{2} + 4 a + 15 + \left(33 a^{5} + 51 a^{4} + 44 a^{3} + 41 a^{2} + 28 a + 26\right)\cdot 53 + \left(49 a^{5} + 3 a^{4} + 4 a^{3} + 15 a^{2} + 52 a + 48\right)\cdot 53^{2} + \left(13 a^{5} + 24 a^{4} + 42 a^{3} + 3 a^{2} + 36 a + 9\right)\cdot 53^{3} + \left(4 a^{5} + 6 a^{4} + 16 a^{3} + 44 a^{2} + 24 a + 29\right)\cdot 53^{4} + \left(18 a^{5} + 4 a^{4} + 47 a^{3} + 38 a^{2} + 3 a + 27\right)\cdot 53^{5} + \left(2 a^{5} + 8 a^{4} + 36 a^{3} + 38 a^{2} + 36 a + 49\right)\cdot 53^{6} + \left(38 a^{5} + 4 a^{4} + 46 a^{3} + 26 a^{2} + 42 a + 52\right)\cdot 53^{7} + \left(33 a^{5} + 6 a^{4} + 41 a^{3} + 2 a^{2} + 17 a + 27\right)\cdot 53^{8} + \left(27 a^{5} + 10 a^{4} + 10 a^{3} + 32 a^{2} + 31 a + 28\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 5 }$ | $=$ |
\( 11 a^{5} + 31 a^{4} + 17 a^{3} + 46 a^{2} + 41 a + 45 + \left(14 a^{5} + 40 a^{4} + 14 a^{3} + 46 a^{2} + 10 a\right)\cdot 53 + \left(37 a^{5} + 43 a^{4} + 16 a^{3} + 8 a + 41\right)\cdot 53^{2} + \left(3 a^{5} + 40 a^{4} + 35 a^{3} + 51 a^{2} + 31 a + 52\right)\cdot 53^{3} + \left(17 a^{5} + 29 a^{4} + 31 a^{3} + 40 a^{2} + 44 a + 18\right)\cdot 53^{4} + \left(10 a^{5} + 38 a^{4} + 12 a^{3} + 15 a^{2} + 3 a + 33\right)\cdot 53^{5} + \left(33 a^{5} + 52 a^{3} + 10 a^{2} + 6 a + 46\right)\cdot 53^{6} + \left(3 a^{5} + 6 a^{4} + 36 a^{3} + 46 a^{2} + 23 a + 52\right)\cdot 53^{7} + \left(47 a^{5} + 42 a^{4} + 2 a^{3} + 47 a^{2} + 44 a + 32\right)\cdot 53^{8} + \left(33 a^{5} + 23 a^{4} + 21 a^{3} + 42 a^{2} + a + 50\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 6 }$ | $=$ |
\( 43 a^{5} + 47 a^{4} + 10 a^{3} + 47 a^{2} + 6 a + 38 + \left(37 a^{5} + 10 a^{4} + a^{3} + 7 a^{2} + 11 a + 1\right)\cdot 53 + \left(51 a^{5} + 46 a^{4} + 21 a^{3} + 35 a^{2} + 17 a + 11\right)\cdot 53^{2} + \left(14 a^{5} + 6 a^{4} + 35 a^{3} + 20 a^{2} + 21 a + 29\right)\cdot 53^{3} + \left(41 a^{5} + 30 a^{4} + 22 a^{3} + 42 a^{2} + 32 a + 13\right)\cdot 53^{4} + \left(39 a^{5} + 18 a^{4} + 17 a^{3} + 12 a^{2} + 7 a + 43\right)\cdot 53^{5} + \left(26 a^{5} + 45 a^{4} + 12 a^{3} + 18 a^{2} + 52 a + 12\right)\cdot 53^{6} + \left(26 a^{5} + 49 a^{4} + 50 a^{3} + 51 a^{2} + 13 a\right)\cdot 53^{7} + \left(15 a^{5} + 9 a^{4} + 2 a^{3} + 37 a^{2} + 31 a + 7\right)\cdot 53^{8} + \left(33 a^{4} + 34 a^{3} + 36 a + 47\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 7 }$ | $=$ |
\( 11 a^{5} + 49 a^{4} + 34 a^{3} + 51 a^{2} + 19 a + 51 + \left(18 a^{5} + 22 a^{4} + 11 a^{3} + 33 a^{2} + 17 a + 1\right)\cdot 53 + \left(35 a^{5} + 19 a^{4} + 42 a^{3} + 9 a^{2} + 14 a + 17\right)\cdot 53^{2} + \left(42 a^{5} + 12 a^{4} + 32 a^{3} + 3 a^{2} + 39 a + 38\right)\cdot 53^{3} + \left(27 a^{5} + 22 a^{4} + 18 a^{3} + 42 a^{2} + 38 a + 48\right)\cdot 53^{4} + \left(35 a^{5} + 27 a^{4} + 6 a^{2} + 36 a + 52\right)\cdot 53^{5} + \left(18 a^{5} + 17 a^{4} + 8 a^{3} + 30 a^{2} + 17 a + 42\right)\cdot 53^{6} + \left(33 a^{5} + 18 a^{4} + 11 a^{3} + 24 a^{2} + 43 a + 50\right)\cdot 53^{7} + \left(15 a^{5} + 11 a^{4} + 2 a^{3} + 12 a^{2} + 31 a + 20\right)\cdot 53^{8} + \left(46 a^{5} + 17 a^{4} + 28 a^{3} + 2 a^{2} + 2 a + 50\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 8 }$ | $=$ |
\( 44 a^{5} + 37 a^{4} + 30 a^{3} + 45 a^{2} + 23 a + 45 + \left(22 a^{5} + 8 a^{4} + 36 a^{3} + 14 a^{2} + 26 a + 45\right)\cdot 53 + \left(43 a^{5} + 24 a^{4} + 39 a^{3} + 8 a^{2} + 6 a + 9\right)\cdot 53^{2} + \left(2 a^{5} + 2 a^{4} + 43 a^{3} + 28 a^{2} + 31 a + 10\right)\cdot 53^{3} + \left(10 a^{5} + 43 a^{4} + 37 a^{3} + 44 a^{2} + 37 a + 27\right)\cdot 53^{4} + \left(30 a^{5} + 26 a^{4} + 38 a^{3} + 51 a^{2} + 18 a + 49\right)\cdot 53^{5} + \left(8 a^{5} + 35 a^{4} + 16 a^{3} + 24 a^{2} + 47 a + 5\right)\cdot 53^{6} + \left(13 a^{5} + 49 a^{4} + 9 a^{3} + 42 a^{2} + 17 a + 14\right)\cdot 53^{7} + \left(26 a^{5} + 8 a^{4} + 44 a^{3} + 46 a^{2} + 40 a + 15\right)\cdot 53^{8} + \left(47 a^{5} + 10 a^{4} + 10 a^{3} + a^{2} + 6 a + 29\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 9 }$ | $=$ |
\( 38 a^{5} + 52 a^{4} + 45 a^{3} + 20 a^{2} + 44 a + 49 + \left(9 a^{5} + 34 a^{4} + 39 a^{3} + 15 a^{2} + 43 a + 3\right)\cdot 53 + \left(a^{5} + 52 a^{4} + 20 a^{3} + 20 a^{2} + 42 a + 10\right)\cdot 53^{2} + \left(14 a^{5} + 30 a^{4} + 33 a^{3} + 29 a^{2} + 30 a + 51\right)\cdot 53^{3} + \left(6 a^{5} + 39 a^{4} + 14 a^{3} + 45 a^{2} + 49 a + 47\right)\cdot 53^{4} + \left(16 a^{5} + 44 a^{4} + 19 a^{3} + 48 a^{2} + 42 a + 44\right)\cdot 53^{5} + \left(19 a^{5} + 6 a^{4} + 25 a^{3} + 29 a^{2} + 48 a + 45\right)\cdot 53^{6} + \left(39 a^{5} + 43 a^{4} + 47 a^{3} + 33 a^{2} + 28 a + 22\right)\cdot 53^{7} + \left(35 a^{5} + 37 a^{4} + 42 a^{3} + 3 a^{2} + 45 a + 46\right)\cdot 53^{8} + \left(50 a^{5} + 41 a^{4} + 32 a^{3} + 52 a^{2} + 30 a + 49\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 10 }$ | $=$ |
\( 17 a^{5} + 7 a^{4} + a^{3} + 7 a^{2} + 7 a + 4 + \left(43 a^{5} + 2 a^{4} + 44 a^{3} + 29 a^{2} + 31 a + 30\right)\cdot 53 + \left(25 a^{5} + 24 a^{4} + 20 a^{3} + 10 a^{2} + 49 a + 22\right)\cdot 53^{2} + \left(48 a^{5} + 52 a^{4} + 7 a^{3} + 5 a^{2} + 13 a + 42\right)\cdot 53^{3} + \left(a^{5} + 2 a^{4} + 9 a^{3} + 48 a^{2} + 46 a\right)\cdot 53^{4} + \left(32 a^{5} + 27 a^{4} + 51 a^{2} + 30 a + 9\right)\cdot 53^{5} + \left(37 a^{5} + 27 a^{4} + 22 a^{3} + 3 a^{2} + 38 a + 17\right)\cdot 53^{6} + \left(21 a^{5} + 49 a^{4} + 8 a^{3} + 37 a^{2} + 35 a + 23\right)\cdot 53^{7} + \left(29 a^{5} + 4 a^{4} + 31 a^{3} + 4 a^{2} + 31 a + 46\right)\cdot 53^{8} + \left(5 a^{5} + 25 a^{4} + 38 a^{3} + 3 a^{2} + 47 a + 34\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 11 }$ | $=$ |
\( 30 a^{5} + 36 a^{4} + 35 a^{3} + 11 a^{2} + 29 a + 3 + \left(38 a^{5} + 14 a^{4} + 34 a^{3} + 3 a^{2} + 19 a + 44\right)\cdot 53 + \left(16 a^{5} + 23 a^{4} + 9 a^{3} + 45 a^{2} + 39 a + 49\right)\cdot 53^{2} + \left(2 a^{5} + a^{4} + 33 a^{3} + 40 a^{2} + 39 a + 20\right)\cdot 53^{3} + \left(18 a^{5} + 38 a^{4} + 27 a^{3} + 31 a^{2} + 13 a + 25\right)\cdot 53^{4} + \left(49 a^{5} + 17 a^{4} + 36 a^{3} + 28 a^{2} + 14 a + 27\right)\cdot 53^{5} + \left(31 a^{5} + 49 a^{4} + 42 a^{2} + 42 a + 47\right)\cdot 53^{6} + \left(2 a^{5} + 42 a^{4} + 16 a^{3} + 31 a^{2} + 44 a + 1\right)\cdot 53^{7} + \left(a^{5} + 28 a^{4} + 42 a^{3} + 23 a^{2} + 52 a + 9\right)\cdot 53^{8} + \left(7 a^{5} + 24 a^{4} + 48 a^{3} + 22 a^{2} + 2 a + 16\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 12 }$ | $=$ |
\( 26 a^{5} + 15 a^{4} + 29 a^{3} + 17 a^{2} + 49 a + 38 + \left(19 a^{5} + a^{4} + 8 a^{3} + 11 a^{2} + 24 a + 26\right)\cdot 53 + \left(3 a^{5} + 49 a^{4} + 48 a^{3} + 37 a^{2} + 4\right)\cdot 53^{2} + \left(39 a^{5} + 28 a^{4} + 10 a^{3} + 49 a^{2} + 16 a + 43\right)\cdot 53^{3} + \left(48 a^{5} + 46 a^{4} + 36 a^{3} + 8 a^{2} + 28 a + 23\right)\cdot 53^{4} + \left(34 a^{5} + 48 a^{4} + 5 a^{3} + 14 a^{2} + 49 a + 25\right)\cdot 53^{5} + \left(50 a^{5} + 44 a^{4} + 16 a^{3} + 14 a^{2} + 16 a + 3\right)\cdot 53^{6} + \left(14 a^{5} + 48 a^{4} + 6 a^{3} + 26 a^{2} + 10 a\right)\cdot 53^{7} + \left(19 a^{5} + 46 a^{4} + 11 a^{3} + 50 a^{2} + 35 a + 25\right)\cdot 53^{8} + \left(25 a^{5} + 42 a^{4} + 42 a^{3} + 20 a^{2} + 21 a + 24\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 13 }$ | $=$ |
\( 42 a^{5} + 22 a^{4} + 36 a^{3} + 7 a^{2} + 12 a + 8 + \left(38 a^{5} + 12 a^{4} + 38 a^{3} + 6 a^{2} + 42 a + 52\right)\cdot 53 + \left(15 a^{5} + 9 a^{4} + 36 a^{3} + 52 a^{2} + 44 a + 11\right)\cdot 53^{2} + \left(49 a^{5} + 12 a^{4} + 17 a^{3} + a^{2} + 21 a\right)\cdot 53^{3} + \left(35 a^{5} + 23 a^{4} + 21 a^{3} + 12 a^{2} + 8 a + 34\right)\cdot 53^{4} + \left(42 a^{5} + 14 a^{4} + 40 a^{3} + 37 a^{2} + 49 a + 19\right)\cdot 53^{5} + \left(19 a^{5} + 52 a^{4} + 42 a^{2} + 46 a + 6\right)\cdot 53^{6} + \left(49 a^{5} + 46 a^{4} + 16 a^{3} + 6 a^{2} + 29 a\right)\cdot 53^{7} + \left(5 a^{5} + 10 a^{4} + 50 a^{3} + 5 a^{2} + 8 a + 20\right)\cdot 53^{8} + \left(19 a^{5} + 29 a^{4} + 31 a^{3} + 10 a^{2} + 51 a + 2\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 14 }$ | $=$ |
\( 10 a^{5} + 6 a^{4} + 43 a^{3} + 6 a^{2} + 47 a + 15 + \left(15 a^{5} + 42 a^{4} + 51 a^{3} + 45 a^{2} + 41 a + 51\right)\cdot 53 + \left(a^{5} + 6 a^{4} + 31 a^{3} + 17 a^{2} + 35 a + 41\right)\cdot 53^{2} + \left(38 a^{5} + 46 a^{4} + 17 a^{3} + 32 a^{2} + 31 a + 23\right)\cdot 53^{3} + \left(11 a^{5} + 22 a^{4} + 30 a^{3} + 10 a^{2} + 20 a + 39\right)\cdot 53^{4} + \left(13 a^{5} + 34 a^{4} + 35 a^{3} + 40 a^{2} + 45 a + 9\right)\cdot 53^{5} + \left(26 a^{5} + 7 a^{4} + 40 a^{3} + 34 a^{2} + 40\right)\cdot 53^{6} + \left(26 a^{5} + 3 a^{4} + 2 a^{3} + a^{2} + 39 a + 52\right)\cdot 53^{7} + \left(37 a^{5} + 43 a^{4} + 50 a^{3} + 15 a^{2} + 21 a + 45\right)\cdot 53^{8} + \left(52 a^{5} + 19 a^{4} + 18 a^{3} + 52 a^{2} + 16 a + 5\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 15 }$ | $=$ |
\( 42 a^{5} + 4 a^{4} + 19 a^{3} + 2 a^{2} + 34 a + 2 + \left(34 a^{5} + 30 a^{4} + 41 a^{3} + 19 a^{2} + 35 a + 51\right)\cdot 53 + \left(17 a^{5} + 33 a^{4} + 10 a^{3} + 43 a^{2} + 38 a + 35\right)\cdot 53^{2} + \left(10 a^{5} + 40 a^{4} + 20 a^{3} + 49 a^{2} + 13 a + 14\right)\cdot 53^{3} + \left(25 a^{5} + 30 a^{4} + 34 a^{3} + 10 a^{2} + 14 a + 4\right)\cdot 53^{4} + \left(17 a^{5} + 25 a^{4} + 52 a^{3} + 46 a^{2} + 16 a\right)\cdot 53^{5} + \left(34 a^{5} + 35 a^{4} + 44 a^{3} + 22 a^{2} + 35 a + 10\right)\cdot 53^{6} + \left(19 a^{5} + 34 a^{4} + 41 a^{3} + 28 a^{2} + 9 a + 2\right)\cdot 53^{7} + \left(37 a^{5} + 41 a^{4} + 50 a^{3} + 40 a^{2} + 21 a + 32\right)\cdot 53^{8} + \left(6 a^{5} + 35 a^{4} + 24 a^{3} + 50 a^{2} + 50 a + 2\right)\cdot 53^{9} +O(53^{10})\)
|
$r_{ 16 }$ | $=$ |
\( 9 a^{5} + 16 a^{4} + 23 a^{3} + 8 a^{2} + 30 a + 8 + \left(30 a^{5} + 44 a^{4} + 16 a^{3} + 38 a^{2} + 26 a + 7\right)\cdot 53 + \left(9 a^{5} + 28 a^{4} + 13 a^{3} + 44 a^{2} + 46 a + 43\right)\cdot 53^{2} + \left(50 a^{5} + 50 a^{4} + 9 a^{3} + 24 a^{2} + 21 a + 42\right)\cdot 53^{3} + \left(42 a^{5} + 9 a^{4} + 15 a^{3} + 8 a^{2} + 15 a + 25\right)\cdot 53^{4} + \left(22 a^{5} + 26 a^{4} + 14 a^{3} + a^{2} + 34 a + 3\right)\cdot 53^{5} + \left(44 a^{5} + 17 a^{4} + 36 a^{3} + 28 a^{2} + 5 a + 47\right)\cdot 53^{6} + \left(39 a^{5} + 3 a^{4} + 43 a^{3} + 10 a^{2} + 35 a + 38\right)\cdot 53^{7} + \left(26 a^{5} + 44 a^{4} + 8 a^{3} + 6 a^{2} + 12 a + 37\right)\cdot 53^{8} + \left(5 a^{5} + 42 a^{4} + 42 a^{3} + 51 a^{2} + 46 a + 23\right)\cdot 53^{9} +O(53^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 16 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 16 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)$ | $-2$ | |
$6$ | $2$ | $(1,7)(2,3)(4,13)(5,12)(6,8)(9,15)(10,11)(14,16)$ | $0$ | ✓ |
$4$ | $3$ | $(1,16,2)(5,6,7)(8,10,9)(13,14,15)$ | $\zeta_{12}^{2}$ | |
$4$ | $3$ | $(1,2,16)(5,7,6)(8,9,10)(13,15,14)$ | $-\zeta_{12}^{2} + 1$ | |
$1$ | $4$ | $(1,14,9,6)(2,13,10,5)(3,4,11,12)(7,16,15,8)$ | $2 \zeta_{12}^{3}$ | |
$1$ | $4$ | $(1,6,9,14)(2,5,10,13)(3,12,11,4)(7,8,15,16)$ | $-2 \zeta_{12}^{3}$ | |
$6$ | $4$ | $(1,8,9,16)(2,12,10,4)(3,5,11,13)(6,15,14,7)$ | $0$ | |
$4$ | $6$ | $(1,10,16,9,2,8)(3,11)(4,12)(5,15,6,13,7,14)$ | $\zeta_{12}^{2} - 1$ | |
$4$ | $6$ | $(1,8,2,9,16,10)(3,11)(4,12)(5,14,7,13,6,15)$ | $-\zeta_{12}^{2}$ | |
$4$ | $12$ | $(1,15,10,6,16,13,9,7,2,14,8,5)(3,4,11,12)$ | $\zeta_{12}^{3} - \zeta_{12}$ | |
$4$ | $12$ | $(1,13,8,6,2,15,9,5,16,14,10,7)(3,4,11,12)$ | $\zeta_{12}$ | |
$4$ | $12$ | $(1,7,10,14,16,5,9,15,2,6,8,13)(3,12,11,4)$ | $-\zeta_{12}^{3} + \zeta_{12}$ | |
$4$ | $12$ | $(1,5,8,14,2,7,9,13,16,6,10,15)(3,12,11,4)$ | $-\zeta_{12}$ |