Basic invariants
| Dimension: | $2$ |
| Group: | $S_3$ |
| Conductor: | \(1176\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 3.1.1176.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_3$ |
| Parity: | odd |
| Determinant: | 1.24.2t1.b.a |
| Projective image: | $S_3$ |
| Projective stem field: | Galois closure of 3.1.1176.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{3} - x^{2} - 2x - 6 \)
|
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 31 + 61\cdot 73 + 23\cdot 73^{2} + 30\cdot 73^{3} + 27\cdot 73^{4} +O(73^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 48 + 40\cdot 73 + 36\cdot 73^{2} + 70\cdot 73^{3} + 27\cdot 73^{4} +O(73^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 68 + 43\cdot 73 + 12\cdot 73^{2} + 45\cdot 73^{3} + 17\cdot 73^{4} +O(73^{5})\)
|
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $3$ | $2$ | $(1,2)$ | $0$ | ✓ |
| $2$ | $3$ | $(1,2,3)$ | $-1$ |