Properties

Label 2.1156.4t3.a.a
Dimension $2$
Group $D_{4}$
Conductor $1156$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1156\)\(\medspace = 2^{2} \cdot 17^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.19652.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.4.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{17})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 17 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 7 + 86\cdot 149 + 54\cdot 149^{2} + 90\cdot 149^{3} + 95\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 + 126\cdot 149 + 116\cdot 149^{2} + 36\cdot 149^{3} + 131\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 139 + 22\cdot 149 + 32\cdot 149^{2} + 112\cdot 149^{3} + 17\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 142 + 62\cdot 149 + 94\cdot 149^{2} + 58\cdot 149^{3} + 53\cdot 149^{4} +O(149^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.