Properties

Label 2.1152.4t3.g.a
Dimension $2$
Group $D_{4}$
Conductor $1152$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.4.27648.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.8.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{2}, \sqrt{3})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 6x^{2} + 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 23 + 20\cdot 73 + 65\cdot 73^{2} + 69\cdot 73^{3} + 39\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 34 + 28\cdot 73 + 25\cdot 73^{2} + 64\cdot 73^{3} + 16\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 39 + 44\cdot 73 + 47\cdot 73^{2} + 8\cdot 73^{3} + 56\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 50 + 52\cdot 73 + 7\cdot 73^{2} + 3\cdot 73^{3} + 33\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$