Properties

Label 2.1053.12t18.b.b
Dimension $2$
Group $C_6\times S_3$
Conductor $1053$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_6\times S_3$
Conductor: \(1053\)\(\medspace = 3^{4} \cdot 13 \)
Artin stem field: Galois closure of 12.0.1870004703089601.2
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Determinant: 1.117.6t1.h.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.351.1

Defining polynomial

$f(x)$$=$ \( x^{12} - 3x^{9} + 10x^{6} + 3x^{3} + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{6} + x^{4} + 9x^{3} + 9x^{2} + x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( a^{5} + 6 a^{4} + 15 a^{3} + 15 a^{2} + 17 a + 4 + \left(21 a^{5} + 9 a^{4} + 22 a^{3} + 7 a^{2} + 20 a + 5\right)\cdot 23 + \left(a^{5} + 13 a^{4} + 4 a^{3} + 8 a^{2} + 16 a\right)\cdot 23^{2} + \left(17 a^{5} + 21 a^{4} + 4 a^{3} + 13 a^{2} + 22 a + 5\right)\cdot 23^{3} + \left(19 a^{5} + 21 a^{4} + 5 a^{2} + 16 a + 22\right)\cdot 23^{4} + \left(16 a^{5} + 6 a^{4} + 6 a^{3} + 6 a^{2} + 12 a + 5\right)\cdot 23^{5} + \left(18 a^{5} + 9 a^{4} + 21 a^{3} + 8 a^{2} + 16 a + 3\right)\cdot 23^{6} + \left(17 a^{5} + 11 a^{4} + 9 a^{3} + 2 a^{2} + 19 a + 18\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 a^{5} + 9 a^{4} + 13 a^{3} + 17 a^{2} + 2 a + 12 + \left(10 a^{5} + 2 a^{4} + 18 a^{3} + 22 a^{2} + 9 a + 16\right)\cdot 23 + \left(15 a^{5} + 12 a^{4} + 12 a^{3} + 20 a^{2} + 12 a + 18\right)\cdot 23^{2} + \left(4 a^{5} + 10 a^{4} + 13 a^{3} + 19 a^{2} + 13 a + 11\right)\cdot 23^{3} + \left(4 a^{5} + 9 a^{4} + 8 a^{3} + 19 a^{2} + 5 a + 9\right)\cdot 23^{4} + \left(15 a^{5} + 19 a^{4} + a^{3} + 18 a^{2} + 6 a + 17\right)\cdot 23^{5} + \left(2 a^{5} + 17 a^{4} + 12 a^{3} + 5 a^{2} + 11 a + 20\right)\cdot 23^{6} + \left(22 a^{5} + 7 a^{4} + 21 a^{3} + 14 a^{2} + 10 a + 5\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 19 a^{5} + 2 a^{4} + 10 a^{3} + 8 a^{2} + 4 a + 9 + \left(a^{4} + 15 a^{3} + 8 a^{2} + 22 a + 15\right)\cdot 23 + \left(2 a^{5} + 11 a^{4} + 5 a^{3} + 11 a^{2} + a + 1\right)\cdot 23^{2} + \left(16 a^{5} + 3 a^{4} + 16 a^{3} + 3 a^{2} + 11 a + 2\right)\cdot 23^{3} + \left(22 a^{5} + 17 a^{4} + 10 a^{2} + 12 a + 6\right)\cdot 23^{4} + \left(7 a^{4} + 15 a^{3} + 12 a + 9\right)\cdot 23^{5} + \left(7 a^{4} + 17 a^{3} + 18 a^{2} + 8 a + 19\right)\cdot 23^{6} + \left(20 a^{5} + 3 a^{4} + 14 a^{3} + 13 a^{2} + 21 a + 17\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 14 a^{5} + 8 a^{4} + 18 a^{3} + 14 a^{2} + 4 a + 7 + \left(14 a^{5} + 11 a^{4} + 4 a^{3} + 15 a^{2} + 16 a + 1\right)\cdot 23 + \left(5 a^{5} + 20 a^{4} + 5 a^{3} + 16 a^{2} + 16 a + 4\right)\cdot 23^{2} + \left(a^{5} + 13 a^{4} + 5 a^{3} + 12 a^{2} + 9 a + 6\right)\cdot 23^{3} + \left(22 a^{5} + 14 a^{4} + 14 a^{3} + 20 a^{2} + 14\right)\cdot 23^{4} + \left(13 a^{5} + 19 a^{4} + 15 a^{3} + 20 a^{2} + 4 a + 22\right)\cdot 23^{5} + \left(a^{5} + 18 a^{4} + 12 a^{3} + 8 a^{2} + 18 a + 21\right)\cdot 23^{6} + \left(6 a^{5} + 3 a^{4} + 14 a^{3} + 6 a^{2} + 15 a + 21\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 a^{5} + 20 a^{4} + 4 a^{3} + 4 a^{2} + 3 a + 21 + \left(19 a^{5} + 2 a^{4} + 13 a^{3} + 9 a^{2} + 5 a + 13\right)\cdot 23 + \left(10 a^{5} + 4 a^{4} + 9 a^{3} + 6 a^{2} + 18 a + 11\right)\cdot 23^{2} + \left(19 a^{5} + 16 a^{4} + 2 a^{3} + 18 a^{2} + 18 a + 9\right)\cdot 23^{3} + \left(15 a^{5} + 2 a^{4} + 13 a^{3} + 8 a^{2} + 5 a + 21\right)\cdot 23^{4} + \left(15 a^{5} + 8 a^{4} + 16 a^{3} + 3 a^{2} + 15 a + 20\right)\cdot 23^{5} + \left(21 a^{5} + 6 a^{4} + 16 a^{3} + 21 a^{2} + 14 a + 15\right)\cdot 23^{6} + \left(18 a^{5} + 19 a^{4} + 20 a^{3} + 11 a^{2} + 22 a + 22\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 19 a^{5} + 7 a^{4} + 5 a^{3} + 3 a^{2} + 22 a + 17 + \left(4 a^{5} + 4 a^{4} + a^{3} + 4 a^{2} + 20 a + 6\right)\cdot 23 + \left(4 a^{5} + 10 a^{4} + 18 a^{3} + 7 a^{2} + 4 a + 21\right)\cdot 23^{2} + \left(19 a^{4} + 14 a^{3} + 19 a^{2} + 15 a + 20\right)\cdot 23^{3} + \left(17 a^{5} + 3 a^{4} + 8 a^{3} + 10 a^{2} + 6 a + 19\right)\cdot 23^{4} + \left(14 a^{5} + 18 a^{4} + 10 a^{3} + 18 a^{2} + 22 a + 3\right)\cdot 23^{5} + \left(13 a^{5} + 16 a^{3} + 16 a^{2} + 5 a + 16\right)\cdot 23^{6} + \left(2 a^{5} + 15 a^{4} + 22 a^{3} + 9 a^{2} + 10 a + 4\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 3 a^{5} + 12 a^{4} + 22 a^{3} + 20 a^{2} + 11 a + 8 + \left(11 a^{5} + 16 a^{4} + 10 a^{3} + 13 a^{2} + 8 a + 4\right)\cdot 23 + \left(14 a^{5} + 12 a^{4} + 16 a^{3} + 3 a^{2} + 20\right)\cdot 23^{2} + \left(8 a^{5} + 9 a^{3} + 13 a^{2} + 6 a + 12\right)\cdot 23^{3} + \left(11 a^{5} + 8 a^{4} + 9 a^{3} + 18 a^{2} + 19 a + 10\right)\cdot 23^{4} + \left(13 a^{5} + 4 a^{4} + 15 a^{3} + a^{2} + 8\right)\cdot 23^{5} + \left(4 a^{5} + 16 a^{4} + 4 a^{3} + 4 a^{2} + 14 a + 18\right)\cdot 23^{6} + \left(2 a^{5} + 10 a^{4} + 6 a^{3} + a^{2} + 3 a + 16\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 12 a^{5} + 15 a^{4} + 21 a^{3} + 19 a^{2} + 20 a + 10 + \left(16 a^{5} + 18 a^{4} + 19 a^{2} + 9 a + 2\right)\cdot 23 + \left(14 a^{5} + 15 a^{4} + 8 a^{3} + 18 a^{2} + a + 7\right)\cdot 23^{2} + \left(5 a^{5} + a^{4} + 9 a^{3} + 19 a^{2} + 8 a + 5\right)\cdot 23^{3} + \left(11 a^{5} + 7 a^{4} + 11 a^{3} + 22 a^{2} + 5 a + 20\right)\cdot 23^{4} + \left(18 a^{5} + 18 a^{4} + 2 a^{3} + 8 a^{2} + 5 a + 13\right)\cdot 23^{5} + \left(14 a^{5} + 5 a^{4} + 7 a^{3} + 10 a^{2} + 16 a + 15\right)\cdot 23^{6} + \left(20 a^{5} + 13 a^{4} + a^{3} + 19 a^{2} + 11 a + 22\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 16 a^{5} + 19 a^{4} + 14 a^{3} + 16 a^{2} + 21 a + 8 + \left(21 a^{5} + 15 a^{4} + 8 a^{3} + 9 a^{2} + 19 a + 2\right)\cdot 23 + \left(7 a^{5} + 8 a^{4} + 18 a^{3} + 9 a^{2} + 22 a + 13\right)\cdot 23^{2} + \left(3 a^{5} + 10 a^{4} + 5 a^{3} + 8 a^{2} + 11 a + 15\right)\cdot 23^{3} + \left(13 a^{5} + 16 a^{4} + a^{3} + 3 a^{2} + 10 a + 4\right)\cdot 23^{4} + \left(15 a^{5} + 19 a^{4} + 19 a^{3} + a^{2} + 8 a + 21\right)\cdot 23^{5} + \left(10 a^{5} + 15 a^{4} + 12 a^{3} + 8 a^{2} + 2 a + 13\right)\cdot 23^{6} + \left(a^{5} + 11 a^{4} + 2 a^{3} + a^{2} + 13 a + 18\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 8 a^{5} + 19 a^{4} + 3 a^{3} + 7 a^{2} + 15 a + 5 + \left(18 a^{5} + 10 a^{4} + 11 a^{3} + 12 a^{2} + 4 a + 16\right)\cdot 23 + \left(16 a^{5} + 17 a^{4} + 21 a^{3} + 21 a + 18\right)\cdot 23^{2} + \left(8 a^{5} + 20 a^{4} + 3 a^{3} + 13 a^{2} + 8 a + 4\right)\cdot 23^{3} + \left(7 a^{4} + 2 a^{3} + 4 a^{2} + 21 a + 15\right)\cdot 23^{4} + \left(14 a^{5} + 5 a^{3} + 12 a^{2} + 16 a\right)\cdot 23^{5} + \left(3 a^{5} + a^{4} + 11 a^{3} + 8 a^{2} + 15 a + 12\right)\cdot 23^{6} + \left(22 a^{4} + 15 a^{3} + 2 a^{2} + 7 a + 6\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 10 a^{5} + 17 a^{4} + 12 a^{3} + 13 a^{2} + 6 a + 19 + \left(15 a^{5} + 6 a^{4} + 10 a^{3} + 6 a^{2} + 15 a + 7\right)\cdot 23 + \left(20 a^{5} + a^{4} + 8 a^{3} + 7 a^{2} + 17 a + 17\right)\cdot 23^{2} + \left(10 a^{5} + 19 a^{4} + 3 a^{3} + 6 a^{2} + 16 a + 2\right)\cdot 23^{3} + \left(11 a^{5} + 18 a^{4} + 22 a^{3} + 3 a^{2} + 4 a + 12\right)\cdot 23^{4} + \left(19 a^{5} + 15 a^{4} + 18 a^{3} + 20 a^{2} + a + 9\right)\cdot 23^{5} + \left(19 a^{5} + 20 a^{4} + 13 a^{3} + a^{2} + 22 a + 9\right)\cdot 23^{6} + \left(8 a^{5} + 3 a^{4} + 6 a^{2} + 20 a + 21\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 17 a^{5} + 4 a^{4} + a^{3} + 2 a^{2} + 13 a + 18 + \left(6 a^{5} + 15 a^{4} + 20 a^{3} + 8 a^{2} + 8 a + 22\right)\cdot 23 + \left(10 a^{4} + 8 a^{3} + 4 a^{2} + 3 a + 3\right)\cdot 23^{2} + \left(19 a^{5} + 3 a^{3} + 13 a^{2} + 18 a + 18\right)\cdot 23^{3} + \left(11 a^{5} + 10 a^{4} + 9 a^{2} + 5 a + 4\right)\cdot 23^{4} + \left(2 a^{5} + 22 a^{4} + 12 a^{3} + 2 a^{2} + 9 a + 4\right)\cdot 23^{5} + \left(3 a^{5} + 17 a^{4} + 14 a^{3} + 3 a^{2} + 15 a + 17\right)\cdot 23^{6} + \left(17 a^{5} + 15 a^{4} + 7 a^{3} + 3 a^{2} + 3 a + 6\right)\cdot 23^{7} +O(23^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,11)(2,12)(3,4)(5,7)(6,8)(9,10)$
$(1,3,2,11,4,12)(5,10,6,7,9,8)$
$(5,6,9)(7,8,10)$
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,11)(2,12)(3,4)(5,7)(6,8)(9,10)$$-2$
$3$$2$$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$$0$
$3$$2$$(1,5)(2,6)(3,10)(4,9)(7,11)(8,12)$$0$
$1$$3$$(1,2,4)(3,11,12)(5,6,9)(7,8,10)$$2 \zeta_{3}$
$1$$3$$(1,4,2)(3,12,11)(5,9,6)(7,10,8)$$-2 \zeta_{3} - 2$
$2$$3$$(5,6,9)(7,8,10)$$\zeta_{3} + 1$
$2$$3$$(5,9,6)(7,10,8)$$-\zeta_{3}$
$2$$3$$(1,4,2)(3,12,11)(5,6,9)(7,8,10)$$-1$
$1$$6$$(1,3,2,11,4,12)(5,10,6,7,9,8)$$2 \zeta_{3} + 2$
$1$$6$$(1,12,4,11,2,3)(5,8,9,7,6,10)$$-2 \zeta_{3}$
$2$$6$$(1,11)(2,12)(3,4)(5,8,9,7,6,10)$$-\zeta_{3} - 1$
$2$$6$$(1,11)(2,12)(3,4)(5,10,6,7,9,8)$$\zeta_{3}$
$2$$6$$(1,12,4,11,2,3)(5,10,6,7,9,8)$$1$
$3$$6$$(1,9,2,5,4,6)(3,8,11,10,12,7)$$0$
$3$$6$$(1,6,4,5,2,9)(3,7,12,10,11,8)$$0$
$3$$6$$(1,8,2,10,4,7)(3,5,11,6,12,9)$$0$
$3$$6$$(1,7,4,10,2,8)(3,9,12,6,11,5)$$0$