Properties

Label 2.1024.8t8.a
Dimension $2$
Group $QD_{16}$
Conductor $1024$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:\(1024\)\(\medspace = 2^{10} \)
Artin number field: Galois closure of 8.2.2147483648.2
Galois orbit size: $2$
Smallest permutation container: $QD_{16}$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.2.2048.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ \( 5 + 57\cdot 73 + 16\cdot 73^{2} + 6\cdot 73^{3} + 3\cdot 73^{4} + 10\cdot 73^{5} + 61\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 + 47\cdot 73 + 29\cdot 73^{2} + 52\cdot 73^{3} + 27\cdot 73^{4} + 36\cdot 73^{5} + 30\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 23 + 16\cdot 73 + 43\cdot 73^{2} + 25\cdot 73^{3} + 66\cdot 73^{4} + 8\cdot 73^{5} + 58\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 36 + 31\cdot 73 + 24\cdot 73^{2} + 67\cdot 73^{3} + 25\cdot 73^{4} + 2\cdot 73^{5} + 60\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 37 + 41\cdot 73 + 48\cdot 73^{2} + 5\cdot 73^{3} + 47\cdot 73^{4} + 70\cdot 73^{5} + 12\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 50 + 56\cdot 73 + 29\cdot 73^{2} + 47\cdot 73^{3} + 6\cdot 73^{4} + 64\cdot 73^{5} + 14\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 62 + 25\cdot 73 + 43\cdot 73^{2} + 20\cdot 73^{3} + 45\cdot 73^{4} + 36\cdot 73^{5} + 42\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 68 + 15\cdot 73 + 56\cdot 73^{2} + 66\cdot 73^{3} + 69\cdot 73^{4} + 62\cdot 73^{5} + 11\cdot 73^{6} +O(73^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,7)(2,8)(4,5)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$4$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,6,2,5,8,3,7,4)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,3,2,4,8,6,7,5)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.