Properties

Label 16.165...561.36t1252.a.a
Dimension $16$
Group $S_6$
Conductor $1.655\times 10^{40}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $16$
Group: $S_6$
Conductor: \(165\!\cdots\!561\)\(\medspace = 3^{8} \cdot 131^{8} \cdot 271^{8} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.4.958527.1
Galois orbit size: $1$
Smallest permutation container: 36T1252
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_6$
Projective stem field: Galois closure of 6.4.958527.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - 3x^{4} + 2x^{2} + 4x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: \( x^{2} + 190x + 19 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 170 a + 39 + \left(103 a + 182\right)\cdot 191 + \left(120 a + 59\right)\cdot 191^{2} + \left(169 a + 113\right)\cdot 191^{3} + \left(112 a + 13\right)\cdot 191^{4} +O(191^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 21 a + 18 + \left(87 a + 116\right)\cdot 191 + \left(70 a + 76\right)\cdot 191^{2} + \left(21 a + 162\right)\cdot 191^{3} + \left(78 a + 147\right)\cdot 191^{4} +O(191^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 + 9\cdot 191 + 125\cdot 191^{2} + 177\cdot 191^{3} + 92\cdot 191^{4} +O(191^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 152 a + 28 + \left(133 a + 82\right)\cdot 191 + \left(113 a + 173\right)\cdot 191^{2} + \left(153 a + 152\right)\cdot 191^{3} + \left(61 a + 155\right)\cdot 191^{4} +O(191^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 39 a + 180 + \left(57 a + 63\right)\cdot 191 + \left(77 a + 153\right)\cdot 191^{2} + \left(37 a + 1\right)\cdot 191^{3} + \left(129 a + 64\right)\cdot 191^{4} +O(191^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 113 + 119\cdot 191 + 175\cdot 191^{2} + 155\cdot 191^{3} + 98\cdot 191^{4} +O(191^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$16$
$15$$2$$(1,2)(3,4)(5,6)$$0$
$15$$2$$(1,2)$$0$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-2$
$40$$3$$(1,2,3)$$-2$
$90$$4$$(1,2,3,4)(5,6)$$0$
$90$$4$$(1,2,3,4)$$0$
$144$$5$$(1,2,3,4,5)$$1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$