Properties

Label 7.4.5.16a
Base 7.1.1.0a1.1
Degree \(20\)
e \(5\)
f \(4\)
c \(16\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{5} + 7d_{0}$

Invariants

Residue field characteristic: $7$
Degree: $20$
Base field: $\Q_{7}$
Ramification index $e$: $5$
Residue field degree $f$: $4$
Discriminant exponent $c$: $16$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $20$
Mass: $1$
Absolute Mass: $1/4$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 2

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
7.4.5.16a1.1 $( x^{4} + 5 x^{2} + 4 x + 3 )^{5} + 7 x$ $C_5\times F_5$ (as 20T29) $100$ $5$ $[\ ]_{5}^{20}$ $[\ ]_{5}^{20}$ $[\ ]^{5}$ $[\ ]^{5}$ $[0]$ $[1]$ $z^4 + 5 z^3 + 3 z^2 + 3 z + 5$ undefined
7.4.5.16a1.2 $( x^{4} + 5 x^{2} + 4 x + 3 )^{5} + 7$ $F_5$ (as 20T5) $20$ $20$ $[\ ]_{5}^{4}$ $[\ ]_{5}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 3 z^2 + 3 z + 5$ undefined
  displayed columns for results