Defining polynomial over unramified subextension
$x^{5} + 7d_{0}$ |
Invariants
Residue field characteristic: | $7$ |
Degree: | $20$ |
Base field: | $\Q_{7}$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $16$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $20$ |
Mass: | $1$ |
Absolute Mass: | $1/4$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
7.4.5.16a1.1 | $( x^{4} + 5 x^{2} + 4 x + 3 )^{5} + 7 x$ | $C_5\times F_5$ (as 20T29) | $100$ | $5$ | $[\ ]^{5}$ | $[0]$ | $[1]$ | undefined |
7.4.5.16a1.2 | $( x^{4} + 5 x^{2} + 4 x + 3 )^{5} + 7$ | $F_5$ (as 20T5) | $20$ | $20$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |