Invariants
| Residue field characteristic: | $7$ |
| Degree: | $5$ |
| Base field: | $\Q_{7}(\sqrt{3})$ |
| Ramification index $e$: | $1$ |
| Residue field degree $f$: | $5$ |
| Discriminant exponent $c$: | $0$ |
| Absolute Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $1$ (complete) |
| Ambiguity: | $5$ |
| Mass: | $1$ |
| Absolute Mass: | $1/10$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.
| Galois group: | $C_{10}$ |
| Hidden Artin slopes: | $[\ ]$ |
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[\ ]$ |
| Jump Set: | undefined |
Fields
Showing all 1
Download displayed columns for results| Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 7.10.1.0a1.1 | $x^{10} + x^{6} + x^{5} + 4 x^{4} + x^{3} + 2 x^{2} + 3 x + 3$ | $C_{10}$ (as 10T1) | $10$ | $10$ | $[\ ]$ | $[0]$ | $[\ ]$ | undefined |