These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 7.2.7.14a1.1 |
$( x^{2} + 6 x + 3 )^{7} + 42 ( x^{2} + 6 x + 3 ) + 7$ |
$F_7 \times C_2$ (as 14T7) |
$84$ |
$2$ |
$[\frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6}]_{6}^{2}$ |
$[\ ]_{6}$ |
$[\ ]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (5 t + 1)$ |
undefined |
| 7.2.7.14a2.1 |
$( x^{2} + 6 x + 3 )^{7} + 35 ( x^{2} + 6 x + 3 ) + 7$ |
$F_7 \times C_2$ (as 14T7) |
$84$ |
$2$ |
$[\frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6}]_{6}^{2}$ |
$[\ ]_{6}$ |
$[\ ]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (3 t + 2)$ |
undefined |
| 7.2.7.14a3.1 |
$( x^{2} + 6 x + 3 )^{7} + 28 ( x^{2} + 6 x + 3 ) + 7$ |
$F_7 \times C_2$ (as 14T7) |
$84$ |
$2$ |
$[\frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6}]_{6}^{2}$ |
$[\ ]_{6}$ |
$[\ ]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (t + 3)$ |
undefined |
| 7.2.7.14a4.1 |
$( x^{2} + 6 x + 3 )^{7} + 21 ( x^{2} + 6 x + 3 ) + 7$ |
$F_7 \times C_2$ (as 14T7) |
$84$ |
$2$ |
$[\frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6}]_{6}^{2}$ |
$[\ ]_{6}$ |
$[\ ]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (6 t + 4)$ |
undefined |
| 7.2.7.14a5.1 |
$( x^{2} + 6 x + 3 )^{7} + 14 ( x^{2} + 6 x + 3 ) + 7$ |
$F_7 \times C_2$ (as 14T7) |
$84$ |
$2$ |
$[\frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6}]_{6}^{2}$ |
$[\ ]_{6}$ |
$[\ ]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (4 t + 5)$ |
undefined |
| 7.2.7.14a6.1 |
$( x^{2} + 6 x + 3 )^{7} + 7 ( x^{2} + 6 x + 3 ) + 7$ |
$F_7 \times C_2$ (as 14T7) |
$84$ |
$2$ |
$[\frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6}]_{6}^{2}$ |
$[\ ]_{6}$ |
$[\ ]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (2 t + 6)$ |
undefined |
| 7.2.7.14a7.1 |
$( x^{2} + 6 x + 3 )^{7} + 42 x ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (6 t + 2)$ |
undefined |
| 7.2.7.14a8.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(42 x + 42\right) ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (4 t + 3)$ |
undefined |
| 7.2.7.14a9.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(42 x + 21\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (5 t + 6)$ |
undefined |
| 7.2.7.14a10.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(42 x + 14\right) ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + 3 t$ |
undefined |
| 7.2.7.14a11.1 |
$( x^{2} + 6 x + 3 )^{7} + 35 x ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (5 t + 4)$ |
undefined |
| 7.2.7.14a12.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(35 x + 42\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (3 t + 5)$ |
undefined |
| 7.2.7.14a13.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(35 x + 28\right) ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + 6 t$ |
undefined |
| 7.2.7.14a14.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(35 x + 21\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (4 t + 1)$ |
undefined |
| 7.2.7.14a15.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(35 x + 7\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + 3$ |
undefined |
| 7.2.7.14a16.1 |
$( x^{2} + 6 x + 3 )^{7} + 28 x ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (4 t + 6)$ |
undefined |
| 7.2.7.14a17.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(28 x + 42\right) ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + 2 t$ |
undefined |
| 7.2.7.14a18.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(28 x + 28\right) ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (5 t + 2)$ |
undefined |
| 7.2.7.14a19.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(28 x + 14\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (t + 4)$ |
undefined |
| 7.2.7.14a20.1 |
$( x^{2} + 6 x + 3 )^{7} + 21 x ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (3 t + 1)$ |
undefined |
| 7.2.7.14a21.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(21 x + 35\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (6 t + 3)$ |
undefined |
| 7.2.7.14a22.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(21 x + 14\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + 6$ |
undefined |
| 7.2.7.14a23.1 |
$( x^{2} + 6 x + 3 )^{7} + 14 x ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (2 t + 3)$ |
undefined |
| 7.2.7.14a24.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(14 x + 21\right) ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + t$ |
undefined |
| 7.2.7.14a25.1 |
$( x^{2} + 6 x + 3 )^{7} + 7 x ( x^{2} + 6 x + 3 ) + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (t + 5)$ |
undefined |
| 7.2.7.14a26.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(7 x + 28\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + (2 t + 1)$ |
undefined |
| 7.2.7.14a27.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(7 x + 21\right) ( x^{2} + 6 x + 3 ) + 7$ |
$D_7:F_7$ (as 14T24) |
$588$ |
$1$ |
$[\frac{7}{6}, \frac{7}{6}]_{6}^{2}$ |
$[\frac{1}{6},\frac{1}{6}]_{6}^{2}$ |
$[\frac{7}{6}]_{6}$ |
$[\frac{1}{6}]_{6}$ |
$[1, 0]$ |
$[1]$ |
$z + 2$ |
undefined |