These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 7.2.7.20a1.1 |
$( x^{2} + 6 x + 3 )^{7} + 35 ( x^{2} + 6 x + 3 )^{4} + 7$ |
$F_7$ (as 14T4) |
$42$ |
$2$ |
$[\frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3}]_{3}^{2}$ |
$[\ ]_{3}$ |
$[\ ]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + 2$ |
undefined |
| 7.2.7.20a2.1 |
$( x^{2} + 6 x + 3 )^{7} + 21 ( x^{2} + 6 x + 3 )^{4} + 7$ |
$F_7$ (as 14T4) |
$42$ |
$2$ |
$[\frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3}]_{3}^{2}$ |
$[\ ]_{3}$ |
$[\ ]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + 4$ |
undefined |
| 7.2.7.20a3.1 |
$( x^{2} + 6 x + 3 )^{7} + 7 ( x^{2} + 6 x + 3 )^{4} + 7$ |
$(C_7:C_3) \times C_2$ (as 14T5) |
$42$ |
$2$ |
$[\frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3}]_{3}^{2}$ |
$[\ ]_{3}$ |
$[\ ]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + 6$ |
undefined |
| 7.2.7.20a4.1 |
$( x^{2} + 6 x + 3 )^{7} + 42 ( x^{2} + 6 x + 3 )^{4} + 7$ |
$F_7$ (as 14T4) |
$42$ |
$2$ |
$[\frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3}]_{3}^{2}$ |
$[\ ]_{3}$ |
$[\ ]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + 1$ |
undefined |
| 7.2.7.20a5.1 |
$( x^{2} + 6 x + 3 )^{7} + 28 ( x^{2} + 6 x + 3 )^{4} + 7$ |
$(C_7:C_3) \times C_2$ (as 14T5) |
$42$ |
$2$ |
$[\frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3}]_{3}^{2}$ |
$[\ ]_{3}$ |
$[\ ]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + 3$ |
undefined |
| 7.2.7.20a6.1 |
$( x^{2} + 6 x + 3 )^{7} + 14 ( x^{2} + 6 x + 3 )^{4} + 7$ |
$(C_7:C_3) \times C_2$ (as 14T5) |
$42$ |
$2$ |
$[\frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3}]_{3}^{2}$ |
$[\ ]_{3}$ |
$[\ ]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + 5$ |
undefined |
| 7.2.7.20a7.1 |
$( x^{2} + 6 x + 3 )^{7} + 35 x ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (5 t + 2)$ |
undefined |
| 7.2.7.20a8.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(35 x + 35\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (5 t + 4)$ |
undefined |
| 7.2.7.20a9.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(35 x + 42\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (5 t + 3)$ |
undefined |
| 7.2.7.20a10.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(35 x + 28\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (5 t + 5)$ |
undefined |
| 7.2.7.20a11.1 |
$( x^{2} + 6 x + 3 )^{7} + 21 x ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (3 t + 4)$ |
undefined |
| 7.2.7.20a12.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(21 x + 35\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (3 t + 6)$ |
undefined |
| 7.2.7.20a13.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(21 x + 7\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (3 t + 3)$ |
undefined |
| 7.2.7.20a14.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(21 x + 42\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (3 t + 5)$ |
undefined |
| 7.2.7.20a15.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(21 x + 14\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (3 t + 2)$ |
undefined |
| 7.2.7.20a16.1 |
$( x^{2} + 6 x + 3 )^{7} + 7 x ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (t + 6)$ |
undefined |
| 7.2.7.20a17.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(7 x + 35\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (t + 1)$ |
undefined |
| 7.2.7.20a18.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(7 x + 7\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (t + 5)$ |
undefined |
| 7.2.7.20a19.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(7 x + 28\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (t + 2)$ |
undefined |
| 7.2.7.20a20.1 |
$( x^{2} + 6 x + 3 )^{7} + 42 x ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (6 t + 1)$ |
undefined |
| 7.2.7.20a21.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(42 x + 21\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (6 t + 5)$ |
undefined |
| 7.2.7.20a22.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(42 x + 28\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (6 t + 4)$ |
undefined |
| 7.2.7.20a23.1 |
$( x^{2} + 6 x + 3 )^{7} + 28 x ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (4 t + 3)$ |
undefined |
| 7.2.7.20a24.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(28 x + 42\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (4 t + 4)$ |
undefined |
| 7.2.7.20a25.1 |
$( x^{2} + 6 x + 3 )^{7} + 14 x ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7^2:C_{12}$ (as 14T23) |
$588$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{4}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{4}$ |
$[\frac{5}{3}]^{2}_{3}$ |
$[\frac{2}{3}]^{2}_{3}$ |
$[4, 0]$ |
$[2]$ |
$z^2 + (2 t + 5)$ |
undefined |
| 7.2.7.20a26.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(14 x + 7\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (2 t + 4)$ |
undefined |
| 7.2.7.20a27.1 |
$( x^{2} + 6 x + 3 )^{7} + \left(14 x + 42\right) ( x^{2} + 6 x + 3 )^{4} + 7$ |
$C_7:F_7$ (as 14T14) |
$294$ |
$1$ |
$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$ |
$[\frac{2}{3},\frac{2}{3}]_{3}^{2}$ |
$[\frac{5}{3}]_{3}$ |
$[\frac{2}{3}]_{3}$ |
$[4, 0]$ |
$[1]$ |
$z^2 + (2 t + 6)$ |
undefined |