Properties

Label 5.1.8.7a
Base 5.1.1.0a1.1
Degree \(8\)
e \(8\)
f \(1\)
c \(7\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{8} + 5d_{0}$

Invariants

Residue field characteristic: $5$
Degree: $8$
Base field: $\Q_{5}$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $7$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $4$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[2]$
Jump Set: undefined (show 3), $[2]$ (show 1)

Galois groups and Hidden Artin slopes

Fields


Showing all 4

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
5.1.8.7a1.1 $x^{8} + 5$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 3 z^6 + 3 z^5 + z^4 + z^2 + 3 z + 3$ $[2]$
5.1.8.7a1.2 $x^{8} + 10$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 3 z^6 + 3 z^5 + z^4 + z^2 + 3 z + 3$ undefined
5.1.8.7a1.3 $x^{8} + 15$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 3 z^6 + 3 z^5 + z^4 + z^2 + 3 z + 3$ undefined
5.1.8.7a1.4 $x^{8} + 20$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 3 z^6 + 3 z^5 + z^4 + z^2 + 3 z + 3$ undefined
  displayed columns for results