Defining polynomial
$x^{6} + 5d_{0}$ |
Invariants
Residue field characteristic: | $5$ |
Degree: | $6$ |
Base field: | $\Q_{5}$ |
Ramification index $e$: | $6$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $5$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $2$ |
Mass: | $1$ |
Absolute Mass: | $1$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[2]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
5.1.6.5a1.1 | $x^{6} + 5$ | $D_{6}$ (as 6T3) | $12$ | $2$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |
5.1.6.5a1.2 | $x^{6} + 10$ | $D_{6}$ (as 6T3) | $12$ | $2$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |