Properties

Label 5.1.5.9a1.5-2.1.0a
Base 5.1.5.9a1.5
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $5$
Degree: $2$
Base field: 5.1.5.9a1.5
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\frac{9}{4}]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 5 }$ within this relative family, not the relative extension.

Galois group: $F_{5}\times C_2$
Hidden Artin slopes: $[\ ]_{4}$
Indices of inseparability: $[5,0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
5.2.5.18a1.13 $( x^{2} + 4 x + 2 )^{5} + 100 ( x^{2} + 4 x + 2 ) + 5$ $F_{5}\times C_2$ (as 10T5) $40$ $2$ $[\frac{9}{4}]_{4}^{2}$ $[\frac{5}{4}]_{4}^{2}$ $[\ ]_{4}$ $[\ ]_{4}$ $[5, 0]$ $[1]$ $z + (3 t + 1)$ undefined
  displayed columns for results