Invariants
| Residue field characteristic: | $5$ |
| Degree: | $2$ |
| Base field: | 5.1.5.9a1.3 |
| Ramification index $e$: | $1$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $0$ |
| Absolute Artin slopes: | $[\frac{9}{4}]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $1$ (complete) |
| Ambiguity: | $2$ |
| Mass: | $1$ |
| Absolute Mass: | $1/2$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 5 }$ within this relative family, not the relative extension.
| Galois group: | $F_{5}\times C_2$ |
| Hidden Artin slopes: | $[\ ]_{4}$ |
| Indices of inseparability: | $[5,0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Fields
Showing all 1
Download displayed columns for results| Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 5.2.5.18a1.7 | $( x^{2} + 4 x + 2 )^{5} + 50 ( x^{2} + 4 x + 2 ) + 5$ | $F_{5}\times C_2$ (as 10T5) | $40$ | $2$ | $[\ ]_{4}$ | $[5, 0]$ | $[1]$ | undefined |