Properties

Label 41.4.4.12a
Base 41.1.1.0a1.1
Degree \(16\)
e \(4\)
f \(4\)
c \(12\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{4} + 41d_{0}$

Invariants

Residue field characteristic: $41$
Degree: $16$
Base field: $\Q_{41}$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $12$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $4$ (complete)
Ambiguity: $16$
Mass: $1$
Absolute Mass: $1/4$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Fields


Showing all 4

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
41.4.4.12a1.1 $( x^{4} + 23 x + 6 )^{4} + 41 x^{3}$ $C_{16}$ (as 16T1) $16$ $16$ $[\ ]_{4}^{4}$ $[\ ]_{4}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
41.4.4.12a1.2 $( x^{4} + 23 x + 6 )^{4} + 41 x^{2}$ $C_8\times C_2$ (as 16T5) $16$ $16$ $[\ ]_{4}^{4}$ $[\ ]_{4}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
41.4.4.12a1.3 $( x^{4} + 23 x + 6 )^{4} + 41 x$ $C_{16}$ (as 16T1) $16$ $16$ $[\ ]_{4}^{4}$ $[\ ]_{4}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
41.4.4.12a1.4 $( x^{4} + 23 x + 6 )^{4} + 41$ $C_4^2$ (as 16T4) $16$ $16$ $[\ ]_{4}^{4}$ $[\ ]_{4}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
  displayed columns for results