Defining polynomial over unramified subextension
| $x^{4} + 41d_{0}$ |
Invariants
| Residue field characteristic: | $41$ |
| Degree: | $16$ |
| Base field: | $\Q_{41}$ |
| Ramification index $e$: | $4$ |
| Residue field degree $f$: | $4$ |
| Discriminant exponent $c$: | $12$ |
| Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $4$ (complete) |
| Ambiguity: | $16$ |
| Mass: | $1$ |
| Absolute Mass: | $1/4$ |
Varying
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 4
Download displayed columns for results| Label | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 41.4.4.12a1.1 | $( x^{4} + 23 x + 6 )^{4} + 41 x^{3}$ | $C_{16}$ (as 16T1) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 41.4.4.12a1.2 | $( x^{4} + 23 x + 6 )^{4} + 41 x^{2}$ | $C_8\times C_2$ (as 16T5) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 41.4.4.12a1.3 | $( x^{4} + 23 x + 6 )^{4} + 41 x$ | $C_{16}$ (as 16T1) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 41.4.4.12a1.4 | $( x^{4} + 23 x + 6 )^{4} + 41$ | $C_4^2$ (as 16T4) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |