Defining polynomial over unramified subextension
| $x^{7} + 41d_{0}$ |
Invariants
| Residue field characteristic: | $41$ |
| Degree: | $14$ |
| Base field: | $\Q_{41}$ |
| Ramification index $e$: | $7$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $12$ |
| Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $4$ (complete) |
| Ambiguity: | $14$ |
| Mass: | $1$ |
| Absolute Mass: | $1/2$ |
Varying
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 4
Download displayed columns for results| Label | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 41.2.7.12a1.1 | $( x^{2} + 38 x + 6 )^{7} + 41 x$ | $C_7 \wr C_2$ (as 14T8) | $98$ | $7$ | $[\ ]^{7}$ | $[0]$ | $[1]$ | undefined |
| 41.2.7.12a1.2 | $( x^{2} + 38 x + 6 )^{7} + 41$ | $D_{7}$ (as 14T2) | $14$ | $14$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 41.2.7.12a1.3 | $( x^{2} + 38 x + 6 )^{7} + 123 x + 943$ | $C_7 \wr C_2$ (as 14T8) | $98$ | $7$ | $[\ ]^{7}$ | $[0]$ | $[1]$ | undefined |
| 41.2.7.12a1.4 | $( x^{2} + 38 x + 6 )^{7} + 123 x + 1435$ | $C_7 \wr C_2$ (as 14T8) | $98$ | $7$ | $[\ ]^{7}$ | $[0]$ | $[1]$ | undefined |