Properties

Label 41.2.7.12a
Base 41.1.1.0a1.1
Degree \(14\)
e \(7\)
f \(2\)
c \(12\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{7} + 41d_{0}$

Invariants

Residue field characteristic: $41$
Degree: $14$
Base field: $\Q_{41}$
Ramification index $e$: $7$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $4$ (complete)
Ambiguity: $14$
Mass: $1$
Absolute Mass: $1/2$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 4

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
41.2.7.12a1.1 $( x^{2} + 38 x + 6 )^{7} + 41 x$ $C_7 \wr C_2$ (as 14T8) $98$ $7$ $[\ ]_{7}^{14}$ $[\ ]_{7}^{14}$ $[\ ]^{7}$ $[\ ]^{7}$ $[0]$ $[1]$ $z^6 + 7 z^5 + 21 z^4 + 35 z^3 + 35 z^2 + 21 z + 7$ undefined
41.2.7.12a1.2 $( x^{2} + 38 x + 6 )^{7} + 41$ $D_{7}$ (as 14T2) $14$ $14$ $[\ ]_{7}^{2}$ $[\ ]_{7}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^6 + 7 z^5 + 21 z^4 + 35 z^3 + 35 z^2 + 21 z + 7$ undefined
41.2.7.12a1.3 $( x^{2} + 38 x + 6 )^{7} + 123 x + 943$ $C_7 \wr C_2$ (as 14T8) $98$ $7$ $[\ ]_{7}^{14}$ $[\ ]_{7}^{14}$ $[\ ]^{7}$ $[\ ]^{7}$ $[0]$ $[1]$ $z^6 + 7 z^5 + 21 z^4 + 35 z^3 + 35 z^2 + 21 z + 7$ undefined
41.2.7.12a1.4 $( x^{2} + 38 x + 6 )^{7} + 123 x + 1435$ $C_7 \wr C_2$ (as 14T8) $98$ $7$ $[\ ]_{7}^{14}$ $[\ ]_{7}^{14}$ $[\ ]^{7}$ $[\ ]^{7}$ $[0]$ $[1]$ $z^6 + 7 z^5 + 21 z^4 + 35 z^3 + 35 z^2 + 21 z + 7$ undefined
  displayed columns for results