Properties

Label 41.1.5.4a1.1-4.1.0a
Base 41.1.5.4a1.1
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $41$
Degree: $4$
Base field: 41.1.5.4a1.1
Ramification index $e$: $1$
Residue field degree $f$: $4$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1/20$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 41 }$ within this relative family, not the relative extension.

Galois group: $C_{20}$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
41.4.5.16a1.4 $( x^{4} + 23 x + 6 )^{5} + 41$ $C_{20}$ (as 20T1) $20$ $20$ $[\ ]_{5}^{4}$ $[\ ]_{5}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
  displayed columns for results