Properties

Label 41.1.5.4a
Base 41.1.1.0a1.1
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{5} + 41d_{0}$

Invariants

Residue field characteristic: $41$
Degree: $5$
Base field: $\Q_{41}$
Ramification index $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $5$ (complete)
Ambiguity: $5$
Mass: $1$
Absolute Mass: $1$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Fields


Showing all 5

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
41.1.5.4a1.1 $x^{5} + 41$ $C_5$ (as 5T1) $5$ $5$ $[\ ]_{5}$ $[\ ]_{5}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
41.1.5.4a1.2 $x^{5} + 246$ $C_5$ (as 5T1) $5$ $5$ $[\ ]_{5}$ $[\ ]_{5}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
41.1.5.4a1.3 $x^{5} + 451$ $C_5$ (as 5T1) $5$ $5$ $[\ ]_{5}$ $[\ ]_{5}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
41.1.5.4a1.4 $x^{5} + 1025$ $C_5$ (as 5T1) $5$ $5$ $[\ ]_{5}$ $[\ ]_{5}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
41.1.5.4a1.5 $x^{5} + 1476$ $C_5$ (as 5T1) $5$ $5$ $[\ ]_{5}$ $[\ ]_{5}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
  displayed columns for results