Properties

Label 41.1.2.1a1.2-7.1.0a
Base 41.1.2.1a1.2
Degree \(7\)
e \(1\)
f \(7\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $41$
Degree: $7$
Base field: $\Q_{41}(\sqrt{41\cdot 3})$
Ramification index $e$: $1$
Residue field degree $f$: $7$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $7$
Mass: $1$
Absolute Mass: $1/14$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 41 }$ within this relative family, not the relative extension.

Galois group: $C_{14}$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
41.7.2.7a1.1 $( x^{7} + 6 x + 35 )^{2} + 41 x$ $C_{14}$ (as 14T1) $14$ $14$ $[\ ]_{2}^{7}$ $[\ ]_{2}^{7}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ undefined
  displayed columns for results