Properties

Label 41.1.2.1a1.2-2.2.2a
Base 41.1.2.1a1.2
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $41$
Degree: $4$
Base field: $\Q_{41}(\sqrt{41\cdot 3})$
Ramification index $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 41 }$ within this relative family, not the relative extension.

Galois group: $C_4\times C_2$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
41.2.4.6a1.2 $( x^{2} + 38 x + 6 )^{4} + 41$ $C_4\times C_2$ (as 8T2) $8$ $8$ $[\ ]_{4}^{2}$ $[\ ]_{4}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
41.2.4.6a1.4 $( x^{2} + 38 x + 6 )^{4} + 123 x + 1435$ $C_4\times C_2$ (as 8T2) $8$ $8$ $[\ ]_{4}^{2}$ $[\ ]_{4}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
  displayed columns for results