Defining polynomial over unramified subextension
$x^{6} + 3 b_{5} x^{5} + 3 a_{4} x^{4} + 3 d_{0} + 9 c_{6}$ |
Invariants
Residue field characteristic: | $3$ |
Degree: | $18$ |
Base field: | $\Q_{3}$ |
Ramification index $e$: | $6$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $27$ |
Artin slopes: | $[2]$ |
Swan slopes: | $[1]$ |
Means: | $\langle\frac{2}{3}\rangle$ |
Rams: | $(2)$ |
Field count: | $496$ (complete) |
Ambiguity: | $18$ |
Mass: | $702$ |
Absolute Mass: | $234$ |
Diagrams
Varying
Indices of inseparability: | $[4,0]$ |
Associated inertia: | $[1,1]$ (show 372), $[1,2]$ (show 124) |
Jump Set: | undefined (show 248), $[1,3]$ (show 1), $[1,7]$ (show 230), $[1,8]$ (show 15), $[1,9]$ (show 2) |
Fields
Showing all 1
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
3.3.6.27a1.43 | $( x^{3} + 2 x + 1 )^{6} + 6 ( x^{3} + 2 x + 1 )^{4} + 3$ | not computed | $ $not computed$ $ | $18$ | not computed | $[4, 0]$ | $[1, 1]$ | $[1, 3]$ |