Properties

Label 3.2.4.6a1.1-1.2.1a
Base 3.2.4.6a1.1
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $3$
Degree: $2$
Base field: 3.2.4.6a1.1
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $C_8.C_8$
Hidden Artin slopes: $[\ ]^{4}$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.2.8.14a1.1 $( x^{2} + 2 x + 2 )^{8} + 3 x$ $C_8.C_8$ (as 16T124) $64$ $8$ $[\ ]_{8}^{8}$ $[\ ]_{8}^{8}$ $[\ ]^{4}$ $[\ ]^{4}$ $[0]$ $[1]$ $z^7 + 2 z^6 + z^5 + 2 z^4 + z^3 + 2 z^2 + z + 2$ undefined
3.2.8.14a1.5 $( x^{2} + 2 x + 2 )^{8} + 3 x + 6$ $C_8.C_8$ (as 16T124) $64$ $8$ $[\ ]_{8}^{8}$ $[\ ]_{8}^{8}$ $[\ ]^{4}$ $[\ ]^{4}$ $[0]$ $[1]$ $z^7 + 2 z^6 + z^5 + 2 z^4 + z^3 + 2 z^2 + z + 2$ undefined
  displayed columns for results