Defining polynomial
$x^{2} + d_{0} \pi$ |
Invariants
Residue field characteristic: | $3$ |
Degree: | $2$ |
Base field: | 3.2.4.6a1.1 |
Ramification index $e$: | $2$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $1$ |
Absolute Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $2$ |
Mass: | $1$ |
Absolute Mass: | $1/4$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.
Galois group: | $C_8.C_8$ |
Hidden Artin slopes: | $[\ ]^{4}$ |
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
---|---|---|---|---|---|---|---|---|
3.2.8.14a1.1 | $( x^{2} + 2 x + 2 )^{8} + 3 x$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |
3.2.8.14a1.5 | $( x^{2} + 2 x + 2 )^{8} + 3 x + 6$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |