Properties

Label 3.2.3.6a5.1-2.1.0a
Base 3.2.3.6a5.1
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $3$
Degree: $2$
Base field: 3.2.3.6a5.1
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\frac{3}{2}]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $C_2\times C_3^2:C_4$
Hidden Artin slopes: $[\frac{3}{2}]_{2}$
Indices of inseparability: $[1,0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.4.3.12a14.1 $( x^{4} + 2 x^{3} + 2 )^{3} + \left(6 x^{3} + 6 x^{2} + 3\right) ( x^{4} + 2 x^{3} + 2 ) + 3$ $C_2\times C_3^2:C_4$ (as 12T41) $72$ $2$ $[\frac{3}{2}, \frac{3}{2}]_{2}^{4}$ $[\frac{1}{2},\frac{1}{2}]_{2}^{4}$ $[\frac{3}{2}]_{2}$ $[\frac{1}{2}]_{2}$ $[1, 0]$ $[1]$ $z + (t^3 + t^2 + 2 t + 2)$ undefined
  displayed columns for results