Properties

Label 3.2.3.10a1.1-1.2.1a
Base 3.2.3.10a1.1
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $3$
Degree: $2$
Base field: 3.2.3.10a1.1
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Absolute Artin slopes: $[\frac{5}{2}]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (incomplete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/2$ ($1/3$ currently in the LMFDB)

Varying

The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $D_6$ (show 1), $S_3 \times C_4$ (show 1) (incomplete)
Hidden Artin slopes: $[\ ]^{2}$ (show 1), $[\ ]$ (show 1) (incomplete)
Indices of inseparability: $[6,0]$
Associated inertia: $[1,1]$ (show 1), $[1,2]$ (show 1)
Jump Set: undefined (show 1), $[1,7]$ (show 1)

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.2.6.22a1.1 $( x^{2} + 2 x + 2 )^{6} + 3$ $D_6$ (as 12T3) $12$ $12$ $[\frac{5}{2}]_{2}^{2}$ $[\frac{3}{2}]_{2}^{2}$ $[\ ]$ $[\ ]$ $[6, 0]$ $[1, 1]$ $z^3 + 2,2 z^2 + 2$ $[1, 7]$
3.2.6.22a2.14 $( x^{2} + 2 x + 2 )^{6} + \left(9 x + 9\right) ( x^{2} + 2 x + 2 )^{2} + \left(15 x + 6\right) ( x^{2} + 2 x + 2 ) + 3 x$ $S_3 \times C_4$ (as 12T11) $24$ $4$ $[\frac{5}{2}]_{2}^{4}$ $[\frac{3}{2}]_{2}^{4}$ $[\ ]^{2}$ $[\ ]^{2}$ $[6, 0]$ $[1, 2]$ $z^3 + 2,2 z^2 + (2 t + 1)$ undefined
  displayed columns for results