Properties

Label 3.2.1.0a1.1-9.1.0a
Base 3.2.1.0a1.1
Degree \(9\)
e \(1\)
f \(9\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $3$
Degree: $9$
Base field: $\Q_{3}(\sqrt{2})$
Ramification index $e$: $1$
Residue field degree $f$: $9$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $9$
Mass: $1$
Absolute Mass: $1/18$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $C_{18}$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[\ ]$
Jump Set: $[1]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.18.1.0a1.1 $x^{18} + x^{10} + 2 x^{8} + 2 x^{6} + x^{5} + 2 x^{4} + 2 x^{2} + 2$ $C_{18}$ (as 18T1) $18$ $18$ $[\ ]^{18}$ $[\ ]^{18}$ $[\ ]$ $[\ ]$ $[0]$ $[\ ]$ $[1]$
  displayed columns for results