Properties

Label 3.2.1.0a1.1-4.2.4a
Base 3.2.1.0a1.1
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{2} + 3d_{0}$

Invariants

Residue field characteristic: $3$
Degree: $8$
Base field: $\Q_{3}(\sqrt{2})$
Ramification index $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $8$
Mass: $1$
Absolute Mass: $1/8$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $C_{16}$ (show 1), $C_8\times C_2$ (show 1)
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined (show 1), $[1]$ (show 1)

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.8.2.8a1.1 $( x^{8} + 2 x^{5} + x^{4} + 2 x^{2} + 2 x + 2 )^{2} + 3 x$ $C_{16}$ (as 16T1) $16$ $16$ $[\ ]_{2}^{8}$ $[\ ]_{2}^{8}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ undefined
3.8.2.8a1.2 $( x^{8} + 2 x^{5} + x^{4} + 2 x^{2} + 2 x + 2 )^{2} + 3$ $C_8\times C_2$ (as 16T5) $16$ $16$ $[\ ]_{2}^{8}$ $[\ ]_{2}^{8}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ $[1]$
  displayed columns for results