Defining polynomial
$x^{8} + 3d_{0}$ |
Invariants
Residue field characteristic: | $3$ |
Degree: | $8$ |
Base field: | $\Q_{3}$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $7$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $2$ |
Mass: | $1$ |
Absolute Mass: | $1$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[2]$ |
Jump Set: | undefined (show 1), $[4]$ (show 1) |
Galois groups and Hidden Artin slopes
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
3.1.8.7a1.1 | $x^{8} + 3$ | $QD_{16}$ (as 8T8) | $16$ | $2$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | $[4]$ |
3.1.8.7a1.2 | $x^{8} + 6$ | $QD_{16}$ (as 8T8) | $16$ | $2$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |