Properties

Label 3.1.3.5a1.2-2.1.0a
Base 3.1.3.5a1.2
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $3$
Degree: $2$
Base field: 3.1.3.5a1.2
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\frac{5}{2}]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $D_{6}$
Hidden Artin slopes: $[\ ]_{2}$
Indices of inseparability: $[3,0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.2.3.10a1.3 $( x^{2} + 2 x + 2 )^{3} + 9 ( x^{2} + 2 x + 2 ) + 3$ $D_{6}$ (as 6T3) $12$ $2$ $[\frac{5}{2}]_{2}^{2}$ $[\frac{3}{2}]_{2}^{2}$ $[\ ]_{2}$ $[\ ]_{2}$ $[3, 0]$ $[1]$ $z + (2 t + 2)$ undefined
  displayed columns for results