Properties

Label 3.1.22.21a
Base 3.1.1.0a1.1
Degree \(22\)
e \(22\)
f \(1\)
c \(21\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{22} + 3d_{0}$

Invariants

Residue field characteristic: $3$
Degree: $22$
Base field: $\Q_{3}$
Ramification index $e$: $22$
Residue field degree $f$: $1$
Discriminant exponent $c$: $21$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[5]$
Jump Set: undefined (show 1), $[11]$ (show 1)

Galois groups and Hidden Artin slopes

Fields


Showing all 2

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
3.1.22.21a1.1 $x^{22} + 3$ $C_{11}:C_{10}$ (as 22T5) $110$ $2$ $[\ ]_{22}^{5}$ $[\ ]_{22}^{5}$ $[\ ]^{5}$ $[\ ]^{5}$ $[0]$ $[5]$ $z^{21} + z^{20} + z^{18} + z^{17} + 2 z^{12} + 2 z^{11} + 2 z^9 + 2 z^8 + z^3 + z^2 + 1$ $[11]$
3.1.22.21a1.2 $x^{22} + 6$ $C_{11}:C_{10}$ (as 22T5) $110$ $2$ $[\ ]_{22}^{5}$ $[\ ]_{22}^{5}$ $[\ ]^{5}$ $[\ ]^{5}$ $[0]$ $[5]$ $z^{21} + z^{20} + z^{18} + z^{17} + 2 z^{12} + 2 z^{11} + 2 z^9 + 2 z^8 + z^3 + z^2 + 1$ undefined
  displayed columns for results