Defining polynomial
$x^{12} + 3 b_{11} x^{11} + 3 b_{10} x^{10} + 3 a_{8} x^{8} + 3 d_{0} + 9 c_{12}$ |
Invariants
Residue field characteristic: | $3$ |
Degree: | $12$ |
Base field: | $\Q_{3}$ |
Ramification index $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $19$ |
Artin slopes: | $[2]$ |
Swan slopes: | $[1]$ |
Means: | $\langle\frac{2}{3}\rangle$ |
Rams: | $(4)$ |
Field count: | $48$ (complete) |
Ambiguity: | $6$ |
Mass: | $18$ |
Absolute Mass: | $18$ |
Diagrams
Varying
Indices of inseparability: | $[8,0]$ |
Associated inertia: | $[2,1]$ (show 36), $[2,2]$ (show 12) |
Jump Set: | undefined (show 24), $[2,6]$ (show 1), $[2,14]$ (show 6), $[2,16]$ (show 12), $[2,17]$ (show 3), $[2,18]$ (show 2) |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
3.1.12.19a2.2 | $x^{12} + 6 x^{8} + 12$ | $D_4 \times C_3$ (as 12T14) | $24$ | $6$ | $[\ ]^{2}$ | $[8, 0]$ | $[2, 1]$ | $[2, 18]$ |
3.1.12.19a2.3 | $x^{12} + 6 x^{8} + 21$ | $D_4 \times C_3$ (as 12T14) | $24$ | $6$ | $[\ ]^{2}$ | $[8, 0]$ | $[2, 1]$ | $[2, 18]$ |