$x^{12} + 3 b_{11} x^{11} + 3 b_{10} x^{10} + 3 a_{8} x^{8} + 3 d_{0} + 9 c_{12}$ |
Indices of inseparability: | $[8,0]$ |
Associated inertia: | $[2,1]$ (show 36), $[2,2]$ (show 12) |
Jump Set: | undefined (show 24), $[2,6]$ (show 1), $[2,14]$ (show 6), $[2,16]$ (show 12), $[2,17]$ (show 3), $[2,18]$ (show 2) |
Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.12.19a2.4 |
6 |
$x^{12} + 3 x^{11} + 6 x^{8} + 3$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 17]$ |
3.1.12.19a2.5 |
6 |
$x^{12} + 3 x^{11} + 6 x^{8} + 12$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 17]$ |
3.1.12.19a2.6 |
6 |
$x^{12} + 3 x^{11} + 6 x^{8} + 21$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 17]$ |
Download
displayed columns for
results