Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.12.19a2.7 |
12 |
$x^{12} + 3 x^{10} + 6 x^{8} + 3$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.8 |
12 |
$x^{12} + 3 x^{10} + 6 x^{8} + 12$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.9 |
12 |
$x^{12} + 3 x^{10} + 6 x^{8} + 21$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.10 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 3$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.11 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 12$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.12 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 21$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.13 |
12 |
$x^{12} + 6 x^{10} + 6 x^{8} + 3$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.14 |
12 |
$x^{12} + 6 x^{10} + 6 x^{8} + 12$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.15 |
12 |
$x^{12} + 6 x^{10} + 6 x^{8} + 21$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.16 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 3$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.17 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 12$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.18 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 21$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |