Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.12.16a1.1 |
2 |
$x^{12} + 3 x^{5} + 3$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8}]_{8}^{2}$ |
$[\frac{13}{8}]^{2}_{2}$ |
$[\frac{5}{8}]^{2}_{2}$ |
$[5, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 11]$ |
3.1.12.16a1.2 |
4 |
$x^{12} + 3 x^{7} + 3 x^{5} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{9}{8}, \frac{9}{8}, \frac{13}{8}, \frac{13}{8}]_{8}^{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8}]_{8}^{2}$ |
$[\frac{9}{8},\frac{9}{8},\frac{13}{8}]^{2}_{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8}]^{2}_{2}$ |
$[5, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 11]$ |
3.1.12.16a1.3 |
4 |
$x^{12} + 6 x^{7} + 3 x^{5} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{9}{8}, \frac{9}{8}, \frac{13}{8}, \frac{13}{8}]_{8}^{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8}]_{8}^{2}$ |
$[\frac{9}{8},\frac{9}{8},\frac{13}{8}]^{2}_{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8}]^{2}_{2}$ |
$[5, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 11]$ |
3.1.12.16a1.4 |
2 |
$x^{12} + 3 x^{5} + 6$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8}]_{8}^{2}$ |
$[\frac{13}{8}]^{2}_{2}$ |
$[\frac{5}{8}]^{2}_{2}$ |
$[5, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.16a1.5 |
4 |
$x^{12} + 3 x^{7} + 3 x^{5} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{9}{8}, \frac{9}{8}, \frac{13}{8}, \frac{13}{8}]_{8}^{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8}]_{8}^{2}$ |
$[\frac{9}{8},\frac{9}{8},\frac{13}{8}]^{2}_{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8}]^{2}_{2}$ |
$[5, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.16a1.6 |
4 |
$x^{12} + 6 x^{7} + 3 x^{5} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{9}{8}, \frac{9}{8}, \frac{13}{8}, \frac{13}{8}]_{8}^{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8}]_{8}^{2}$ |
$[\frac{9}{8},\frac{9}{8},\frac{13}{8}]^{2}_{2}$ |
$[\frac{1}{8},\frac{1}{8},\frac{5}{8}]^{2}_{2}$ |
$[5, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |