Defining polynomial
$x^{12} + 3 a_{1} x + 3 d_{0}$ |
Invariants
Residue field characteristic: | $3$ |
Degree: | $12$ |
Base field: | $\Q_{3}$ |
Ramification index $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $12$ |
Artin slopes: | $[\frac{9}{8}]$ |
Swan slopes: | $[\frac{1}{8}]$ |
Means: | $\langle\frac{1}{12}\rangle$ |
Rams: | $(\frac{1}{2})$ |
Field count: | $2$ (complete) |
Ambiguity: | $2$ |
Mass: | $2$ |
Absolute Mass: | $2$ |
Diagrams
Varying
Indices of inseparability: | $[1,0]$ |
Associated inertia: | $[2,1]$ |
Jump Set: | undefined (show 1), $[2,7]$ (show 1) |
Galois groups and Hidden Artin slopes
Fields
Showing all 1
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
3.1.12.12a1.1 | $x^{12} + 3 x + 3$ | $F_9:C_2$ (as 12T84) | $144$ | $1$ | $[\frac{9}{8}]^{2}_{2}$ | $[1, 0]$ | $[2, 1]$ | $[2, 7]$ |