Defining polynomial
$x^{11} + 3$ |
Invariants
Residue field characteristic: | $3$ |
Degree: | $11$ |
Base field: | $\Q_{3}$ |
Ramification index $e$: | $11$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $10$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $1$ (complete) |
Ambiguity: | $1$ |
Mass: | $1$ |
Absolute Mass: | $1$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[5]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 1
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
3.1.11.10a1.1 | $x^{11} + 3$ | $C_{11}:C_5$ (as 11T3) | $55$ | $1$ | $[\ ]^{5}$ | $[0]$ | $[5]$ | undefined |