Defining polynomial over unramified subextension
$x^{8} + 4 a_{15} x^{7} + \left(4 b_{12} + 8 c_{20}\right) x^{4} + 8 b_{19} x^{3} + 4 a_{10} x^{2} + 8 b_{17} x + 2$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $40$ |
Base field: | $\Q_{2}$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $110$ |
Artin slopes: | $[\frac{8}{3},\frac{8}{3},\frac{7}{2}]$ |
Swan slopes: | $[\frac{5}{3},\frac{5}{3},\frac{5}{2}]$ |
Means: | $\langle\frac{5}{6},\frac{5}{4},\frac{15}{8}\rangle$ |
Rams: | $(\frac{5}{3},\frac{5}{3},5)$ |
Field count: | $0$ (incomplete) |
Ambiguity: | $10$ |
Mass: | $31490048$ |
Absolute Mass: | $31490048/5$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.