Defining polynomial over unramified subextension
$x^{8} + 4 b_{15} x^{7} + \left(2 a_{6} + 8 c_{22}\right) x^{6} + 8 b_{21} x^{5} + 2 b_{4} x^{4} + 8 b_{19} x^{3} + 8 b_{17} x + 4 c_{8} + 2$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $40$ |
Base field: | $\Q_{2}$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $105$ |
Artin slopes: | $[2,2,\frac{15}{4}]$ |
Swan slopes: | $[1,1,\frac{11}{4}]$ |
Means: | $\langle\frac{1}{2},\frac{3}{4},\frac{7}{4}\rangle$ |
Rams: | $(1,1,8)$ |
Field count: | $0$ (incomplete) |
Ambiguity: | $40$ |
Mass: | $1040187392$ |
Absolute Mass: | $1040187392/5$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.