Defining polynomial over unramified subextension
$x^{8} + 2 a_{6} x^{6} + \left(2 b_{4} + 4 c_{12}\right) x^{4} + 4 b_{11} x^{3} + 4 a_{9} x + 4 c_{8} + 2$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $24$ |
Base field: | $\Q_{2}$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $48$ |
Artin slopes: | $[2,2,\frac{5}{2}]$ |
Swan slopes: | $[1,1,\frac{3}{2}]$ |
Means: | $\langle\frac{1}{2},\frac{3}{4},\frac{9}{8}\rangle$ |
Rams: | $(1,1,3)$ |
Field count: | $0$ (incomplete) |
Ambiguity: | $24$ |
Mass: | $3136$ |
Absolute Mass: | $3136/3$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.