Properties

Label 2.3.2.9a1.6-1.3.2a
Base 2.3.2.9a1.6
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{3} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $3$
Base field: 2.3.2.9a1.6
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[3]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/6$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $S_3 \times C_6$
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[6,0]$
Associated inertia: $[2,1]$
Jump Set: $[3,9]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.3.6.33a1.26 $( x^{3} + x + 1 )^{6} + 4 ( x^{3} + x + 1 )^{3} + 10$ $S_3 \times C_6$ (as 18T6) $36$ $6$ $[3]_{3}^{6}$ $[2]_{3}^{6}$ $[\ ]^{2}$ $[\ ]^{2}$ $[6, 0]$ $[2, 1]$ $z^4 + z^2 + 1,z + t$ $[3, 9]$
  displayed columns for results