| $x^{2} + \left(b_{7} \pi^{4} + b_{5} \pi^{3}\right) x + c_{8} \pi^{5} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Galois group: | $C_{12}$ (show 4), $D_4 \times C_3$ (show 2), $C_4\times A_4$ (show 4), $D_4\times A_4$ (show 2), $C_2^4:C_{12}$ (show 8), $C_2\wr C_6$ (show 8) |
| Hidden Artin slopes: | $[2,2,\frac{7}{2},\frac{7}{2}]$ (show 8), $[2,2,2]$ (show 2), $[2,2,2,\frac{7}{2},\frac{7}{2}]$ (show 8), $[\ ]$ (show 4), $[2,2]$ (show 4), $[2]$ (show 2) |
| Indices of inseparability: | $[8,4,0]$ |
| Associated inertia: | $[1,1]$ |
| Jump Set: | $[1,3,7]$ |
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.3.4.33a1.207 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 10$ |
$C_4\times A_4$ (as 12T29) |
$48$ |
$4$ |
$[2, 2, 3, 4]^{3}$ |
$[1,1,2,3]^{3}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
| 2.3.4.33a1.208 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 26$ |
$C_4\times A_4$ (as 12T29) |
$48$ |
$4$ |
$[2, 2, 3, 4]^{3}$ |
$[1,1,2,3]^{3}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
| 2.3.4.33a1.211 |
$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 10$ |
$C_4\times A_4$ (as 12T29) |
$48$ |
$4$ |
$[2, 2, 3, 4]^{3}$ |
$[1,1,2,3]^{3}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
| 2.3.4.33a1.212 |
$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 26$ |
$C_4\times A_4$ (as 12T29) |
$48$ |
$4$ |
$[2, 2, 3, 4]^{3}$ |
$[1,1,2,3]^{3}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
Download
displayed columns for
results