These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
  
          
                  | Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Artin slope content $/ \Q_p$ | Swan slope content $/ \Q_p$ | Hidden Artin slopes $/ \Q_p$ | Hidden Swan slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Resid. Poly | Jump Set | 
      
      
              | 2.3.4.33a1.225 | $( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ | 
      
              | 2.3.4.33a1.226 | $( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ | 
      
              | 2.3.4.33a1.227 | $( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ | 
      
              | 2.3.4.33a1.228 | $( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ | 
      
              | 2.3.4.33a1.229 | $( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ | 
      
              | 2.3.4.33a1.230 | $( x^{3} + x + 1 )^{4} + 8 x^{2} ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ | 
      
              | 2.3.4.33a1.231 | $( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ | 
      
              | 2.3.4.33a1.232 | $( x^{3} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ | $C_2\wr C_6$ (as 12T134) | $384$ | $2$ | $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ | $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ | $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | $[8, 4, 0]$ | $[1, 1]$ | $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ | $[1, 3, 7]$ |