These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
  
          
                  | Label | 
                  Polynomial $/ \Q_p$ | 
                  Galois group $/ \Q_p$ | 
                  Galois degree $/ \Q_p$ | 
                  $\#\Aut(K/\Q_p)$ | 
                  Artin slope content $/ \Q_p$ | 
                  Swan slope content $/ \Q_p$ | 
                  Hidden Artin slopes $/ \Q_p$ | 
                  Hidden Swan slopes $/ \Q_p$ | 
                  Ind. of Insep. $/ \Q_p$ | 
                  Assoc. Inertia $/ \Q_p$ | 
                  Resid. Poly | 
                  Jump Set | 
              
      
      
              | 2.3.4.30a2.89 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ | 
          
      
              | 2.3.4.30a2.90 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 12\right) ( x^{3} + x + 1 )^{2} + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ | 
          
      
              | 2.3.4.30a2.91 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ | 
          
      
              | 2.3.4.30a2.92 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 12\right) ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ | 
          
      
              | 2.3.4.30a2.93 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 ( x^{3} + x + 1 ) + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ | 
          
      
              | 2.3.4.30a2.94 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 12\right) ( x^{3} + x + 1 )^{2} + 8 ( x^{3} + x + 1 ) + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ | 
          
      
              | 2.3.4.30a2.95 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ | 
          
      
              | 2.3.4.30a2.96 | 
              $( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 12\right) ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ | 
              $C_2\wr C_6$ (as 12T134) | 
              $384$ | 
              $2$ | 
              $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ | 
              $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ | 
              $[2,2,2,\frac{7}{2},\frac{7}{2}]$ | 
              $[1,1,1,\frac{5}{2},\frac{5}{2}]$ | 
              $[7, 4, 0]$ | 
              $[1, 1]$ | 
              $z^2 + (t + 1),(t + 1) z + t$ | 
              $[1, 3, 7]$ |