Defining polynomial
| $x^{4} + \left(b_{15} \pi^{4} + a_{11} \pi^{3}\right) x^{3} + \left(b_{10} \pi^{3} + a_{6} \pi^{2}\right) x^{2} + b_{13} \pi^{4} x + c_{16} \pi^{5} + c_{12} \pi^{4} + \pi$ |
Invariants
| Residue field characteristic: | $2$ |
| Degree: | $4$ |
| Base field: | 2.2.4.22a1.81 |
| Ramification index $e$: | $4$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $14$ |
| Absolute Artin slopes: | $[3,\frac{7}{2},4,4]$ |
| Swan slopes: | $[3,4]$ |
| Means: | $\langle\frac{3}{2},\frac{11}{4}\rangle$ |
| Rams: | $(3,5)$ |
| Field count: | $0$ (incomplete) |
| Ambiguity: | $4$ |
| Mass: | $576$ |
| Absolute Mass: | $288$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.