These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.52c5.102 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.117 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.132 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.139 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.160 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.175 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.178 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.185 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.D_4$ (as 16T389) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |