| $x^{2} + \left(b_{5} \pi^{3} + a_{3} \pi^{2}\right) x + c_{6} \pi^{4} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Galois group: | $C_2^3:C_4$ (show 2), $C_2^2.D_4$ (show 2), $C_2^4.D_4$ (show 2) |
| Hidden Artin slopes: | $[\ ]^{2}$ (show 2), $[2]$ (show 2), $[2,3]^{2}$ (show 2) |
| Indices of inseparability: | $[13,10,4,0]$ (show 2), $[13,12,4,0]$ (show 4) |
| Associated inertia: | $[1,1]$ (show 4), $[1,2]$ (show 2) |
| Jump Set: | $[1,5,15,23]$ |
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.40d1.6 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 2$ |
$C_2^3:C_4$ (as 16T33) |
$32$ |
$8$ |
$[2, 3, 3]^{4}$ |
$[1,2,2]^{4}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[13, 12, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 15, 23]$ |
| 2.2.8.40d1.14 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 2$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 2, 3, 3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[2]$ |
$[1]$ |
$[13, 12, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 15, 23]$ |
| 2.2.8.40d1.16 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 10$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 2, 3, 3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[2]$ |
$[1]$ |
$[13, 12, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 15, 23]$ |
| 2.2.8.40d1.17 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 2$ |
$C_2^3:C_4$ (as 16T33) |
$32$ |
$8$ |
$[2, 3, 3]^{4}$ |
$[1,2,2]^{4}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[13, 12, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 15, 23]$ |
| 2.2.8.40d6.4 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 2$ |
$C_2^4.D_4$ (as 16T324) |
$128$ |
$2$ |
$[2, 2, 3, 3, 3]^{4}$ |
$[1,1,2,2,2]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[13, 10, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + t z + t$ |
$[1, 5, 15, 23]$ |
| 2.2.8.40d6.9 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 4 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 2$ |
$C_2^4.D_4$ (as 16T324) |
$128$ |
$2$ |
$[2, 2, 3, 3, 3]^{4}$ |
$[1,1,2,2,2]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[13, 10, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + t z + t$ |
$[1, 5, 15, 23]$ |
Download
displayed columns for
results